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UNIFORMLY SEPARATING FAMILIES
OF FUNCTIONS

BY
Y. STERNFELD’

ABSTRACT

A concept concerning separation of points by functions is defined and studied.
This concept has close relations with superpositions of functions and dimension
theory, and these relations are investigated. A theorem concerning the dimen-
sion of projections of Cantor manifolds in R™ is proved.

1. Introduction

This article is devoted to the investigation of a concept concerning separation
of points by functions, which we call uniform separation. It turns out that this
concept has close relations with superpositions of functions and dimension
theory. Our main emphasis will be on the investigation of the connection
between these concepts.

Let X be a set, and let F be a family of functions on X. (We disregard the
range of elements of F for the time being.) Recall that F is called a (point)
separating family if for each x# z in X, ¢(x)# ¢(z) for some ¢ € F. The
property of uniform separation is stronger than that of separation.

1.1. DeriniTioN. (i) We call F a strongly separating family if for each integer
m and each pair {x;}]~, {z;}/~, of disjoint m tuples of points in X there is some
¢ € F so that the sets {o{(x,)}[~1, {¢(z;)}}~, do not coincide.

(i) F is called a uniformly separating family (u.s.f.) if there existsa 0 < A =1
such that for each pair {x;}]~,, {z,}]~, of disjoint finite sequences in X, there exists
some ¢ € F so that if from the two sequences {¢ (x;)}/~: and {@ (2;)}]~, in ¢[X]
we remove a maximal number of pairs of points ¢(x;) and ¢(z;) with
¢(x,) = ¢(z;,) there remains at least Am points in each sequence. (Or, equival-
ently, at most (1~ A)m pairs can be removed; see also Definition 2.2.)
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Clearly if F is a u.s.f. then F is strongly separating, and a strongly separating
family separates points. (Just take m =1 in the above definition.) The following
examples show that the converses are false.

ExampLes. (i) Let X ={(x,y):0=x,y =1} be the unit square. Let F =
{¢1, p2} where @(x, y) = x and ¢(x, y) = y. Clearly F separates points, but is not
strongly separating: Let x; = (0,0), x,=(1,1), z,=(1,0) and z,=(0,1). Then
{x,, x2} N {z,, 22} = Dbut ¢ [{x\, x2}] = ¢:[{z1, 2:}] ={0,1}, i = 1,2. Hence F is not
a strongly separating family. (Throughout this paper we use the symbol ¢ [ U] for
the image of the set U under the function ¢, and ¢ (x) for the image of the point x
under ¢.)

(ii) Let X = N be the natural numbers, and let ¢,(n)={n/2] and ¢i(n)=
[(n + 1)/2]). Then F = {¢,, ¢,} is strongly separating, but not u.s.f. To show that F
is strongly separating, let A ={n,,n,,-- -, n.}, B ={ky, ks, -, kn} be disjoint
sequences in N. The assumption that ¢;[A] = ¢,[B], i = 1,2 would imply that
for each n, € A, n, = 1 € B, and vice versa, which is clearly impossible. Hence F
is strongly separating. But F is not a u.s.f., indeed let A, ={1,3,:--,2n — 1},
B, ={2,4,---,2n}. Then A, N B, =, |A.|=|B.| = n (|A| denotes the cardi-
nality of A) and

ei[A]=10,1,2,--,n—1}, @[B.]={1,2,--,n}
e[A)={1,2,- -, n}, 0B.]={1,2,- -, n}.

Hence |@i[A.]N¢[B.}]lZn—-2,i=1,2 and F is not a u.s.f.

(iii) Let X be the boundary of the triangle in I? with vertices (0,0), (3,0) and
(1,1), and let ¢, ¢; and F be defined as in (i) above. It is not hard to check that F
is strongly separating but not a u.s.f.

In Section 2 we show that for a finite family F = {¢,}%, of functions on X,
being a u.s.f. is equivalent to the representability of each real bounded function f
on X as f(x)=Z¥, g (¢:(x)) where the g;’s are real bounded functions on the
range Y, of ¢, 1 =i = k, and that in the case where X is a compact metric space,
and the elements of F are continuous functions on X, the representability of
each continuous real function f on X in the above form with g, continuous on Y,
implies that F is a u.s.f.

Kolmogorov {7] and Ostrand [11] proved theorems from which, in particular,
it follows that for each compact n-dimensional metric space X, there exist

2n+1

continuous real functions {¢;};Zi" such that each continuous real function f on X

2n+1

can be represented as f(x)= ZiZ{' gi(¢:(x)) where the g;’s are real continuous
functions on the real line.
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Hence, it follows that each n-dimensional compact metric space admits a u.s.f.
consisting of 2n + 1 real valued continuous functions.

We conjecture that this number 2n + 1 is the best possible, i.e., that the
following holds:

1.2. CoNJECTURE. Let X be a compact n-dimensional metric space (n = 2)
then no family consisting of 2n real continuous functions on X is a u.s.f.

The main part of the paper is devoted to results related to this conjecture. In
particular we prove the conjecture for n = 2,3, 4.

In Section 3 we state a lemma which gives sufficient conditions for a finite
family of 2n continuous real functions on a compact metric space in order not to
be a u.s.f. This lemma will be our main tool in proving Conjecture 1.2 for
n =2,3,4, and we hope that it will be useful in proving it for all n = 2. The
lemma will be proved in Section 6.

In Section 4 we state and prove a theorem concerning the dimension of
projections of Cantor manifolds in R™. This theorem has no direct connection
with u.s.f., but will be used in proving Conjecture 1.2. In that section we also
recall some theorems on closed mappings which lower dimension that will be
needed later.

In Section §, finally, we prove Conjecture 1.2 for n =2,3,4.

Some remarks concerning Conjecture 1.2 are in place here; first the restriction
n =z 2 in Conjecture 1.2 cannot be omitted: if X is an interval, the function
¢(x)=x clearly separates points uniformly. (For a family consisting of one
function the concepts of separation and uniform separation coincide.) It is also
clear that a single continuous real function separates the points of a space X if
and only if X is topologically contained in the real line.

In [12, §3] it has been proved that a family consisting of two real continuous
functions on the circle is not a u.s.f. there. It follows that if X is a one-
dimensional space which contains a circle then Conjecture 1.2 holds for X.
Hence, the only one-dimensional spaces on which we do not have full informa-
tion about the minimal number of real continuous functions which separates
their points uniformly are these spaces which do not contain a circle. Such spaces
which are also connected and locally connected are called trees (or dendrites).
Superpositions of functions on trees were studied intensively in Arnold’s paper
[1], and played a central role in solving Hilbert’s problem 13, and in the
development of the theory of superpositions of functions.

Conjecture 1.2, if true, combined with Ostrand’s result [11], and our observa-
tions in Section 2, would imply the following characterization of dimension for



64 Y. STERNFELD Israel J. Math.

compact metric spaces: dim X = n if and only if there exists a u.s.f. for X
consisting of 2n + 1 real continuous functions (n > 0). In view of Section 5, this
characterization holds for n =4 at least. Let us recall that from the classical
theorem of Menger and Nobeling (see, e.g., [4]) it follows that if dim X = n, then
there exist 2n + 1 real continuous functions on X which separate its points. The
number 2n + 1 here is minimal in the sense that for each n there exists a space
X, of dimension n such that X, cannot be separated by 2n real continuous
functions (see Flores [3]). But the number 2n + 1 is obviously not minimal for
each n-dimensional space. I" for example can be separated by n real continuous
functions. Moreover, for each n =k =2n+1 there exists a space X of
dimension n so that the minimal number of real continuous functions which
separate its points is k. It follows that the minimal number n = k =2n + 1of real
continuous functions which separate the points of an n-dimensional space X
depends on the global combinatorial structure of X.

The situation with uniform separation is different (for n =2). Here the
dimension of X (which is a local property) is the only factor which influences the
minimal number (as we prove for n =2,3,4, and conjecture for all n = 2).

2. Uniformly separating families of functions and their connection with
superpositions of functions and dimension theory

We begin this section with another definition of a u.s.f., more formal than the
one given in the introduction. For this definition we need the concept of a set
with multiplicity.

2.1. DeFNITION. A set with multiplicity is a pair (A, a) where A is a set, and
a is a function on A whose values are nonnegative integers. (Intuitively a(x) is
the number of times x € A appears in (A, a).)

The cardinality |(A, a)| of the set with multiplicity (A, a) is defined by
[(A, a)| = Z.caa(x), and the intersection of two sets with multiplicity (A, a) and
(B,b) is the set with multiplicity (A N B,aab), where (aab)(x)=
min{a(x), b(x)}. If (A, a) is a set with multiplicity, and ¢ is a function on A,
then ¢[(A, a)}is the set with multiplicity (¢[A], ¢a), where pa(y)is defined by

ea(y)= > Jax) for y € ¢[A].

xEAr\;pﬂ(y
Having this definition in mind we can define u.s.f. as follows:

2.2. DeFINITION.  Let X be a set, and let F be a family of functions on X. We
call F a u.s.f. if there exists a constant 0 <A =1 such that for each pair of sets
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with multiplicity (A, a) and (B, b)in X with A N B = Fand|(A, a)| = |(B, b)| =
m <« there exists a ¢ € F so that |¢[(A, a)]N¢[(B,b)]|=(1-A)m.

It is easy to check that Definitions 1.1 and 2.2 agree.

Let X be a set. We denote by /,(X) the Banach space of real functions u on X
such that [|u | = Z.ex | p (x)] <o (i.e. {x : u(x) # 0} is a countable set {x, }7-, and
Snoi |l (x.)| < ; for convenience we shall use the symbol u =27, a.8,, for
u € L(X) where a, = u(x.)). B(X) will denote the Banach space of bounded
real functions on X with the norm [ f|| = sup,ex|f(x)|. It is well known that
(L(X))* = B(X).

If X is a compact metric space, then C(X) will denote the closed subspace of
B(X) consisting of the continuous functions. We identify C(X)* with the space
of regular Borel measures on X with the total variation as the norm. Observe
that {,(X) is the closed subspace of C(X)* spanned by the singletons §,, x € X.

All the notations and theorems concerning Banach spaces, linear operators,
and their adjoints which we use in the article can be found in [2].

Let F = {,}{_, be a finite family of functions on X such that ¢; maps X onto
the set Y, 1=i=k, and let Y = UX, Y, be the (disjoint) union of the Y,’s.

Consider the following operators:

defined by

Tu(y)= 2 wx); w€LX)y€eY,

x€ely)
or, equivalently, if 4 = 27., a.8,, then

I(i an6x"> = 2 ana'h‘(xn);
n=1

n=1

and
defined by
k
T=>T
i=1
ie.

© k = k=
T(E a,,5,,‘> = E ’TA(E anax") = E E aﬂsvi(xn)'
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Remark. We regard [,(Y:), 1 =i = k as the subspace of [,(Y) consisting of
the functions which vanish outside Y. The same convention applies to B(Y)),
C(Y.) and C(Y))*.

We define further operators U, : B(Y:)— B(X) and U : B(Y)— B(X) by

(2.5) Ug(x)=g(ei(x)); gEB(Y.),xEX
and
(2.6) Ug(x)=§g(qo.-(x)); gEB(Y), x€X.

2.7. ProprosiTioN. The operators U, T, 1=i=k, U and T are linear and
bounded. Moreover Tt = U, for 1=i=k and T*=U.

Proor. Trivial. Observe, e.g., that for x € X and g € B(Y))

(T(8)(x) = (T7g)(8:) = (Td:)8 = (8 ix))8 = 8 (i (x)).

Hence by (2.5) T%= U. O
The following theorem links the concepts of u.s.f. with superpositions of
functions:

2.8 THEOREM. In our previous notation, the following three statements are
equivalent:

(i) Fisausf

(i) Each f € B(X) is representable in the form

f0)= 3 slo(x) with g€ B(Y.)

(iii) The operator T (defined in (2.4)) is an isomorphism into.

Proor. Clearly (ii) means that the operator U maps B(Y) onto B(X). It is
well known that a bounded linear operator T on a Banach space is an
isomorphism into if and only if its adjoint T* maps onto. Since by Proposition
2.7 T*= U, we get that (ii) © (iii).

Assume that (iii) holds. It follows that there exists a 8 >0 such that
[ Tullz Bllp| for all u € 1.(X); hence || T || = (B/k)||p || for some 1=i=k.
Notice that || T || =|/x || and therefore B = k.

To show that F is a u.s.f. let (A, a) and (B, b) be disjoint sets with multiplicity
in X, with

(A, )| =|(B,b)| = m.
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Consider the element u € [,(X) defined by

(2.9) w=2 a(x)s — D b(x)é.

XEA x&B

Clearly || i || = 2m. From Definition 2.1 and (2.3) it follows that
I T [l =2m = 2| ¢ [(A, a)] N o [(B, b)]].

As we observed [[Tu|=(B/k)|u| for some 1=i=k, i.e. for this i
lei[(A,a)]N @ [(B,b)]|=(1- B/k)m. Hence F is u.s.f. with the constant A =
B/k. This proves (iii) = (i).

We still have to show that (i) > (ii). Assume F is u.s.f. with the constant
A > 0.1t follows (as in the proof of (iii) = (1)) that for all u € [,(X)of the form
(2.9) [Tu |z Alln |- We wish to show that U = T* maps onto B(X). The
constant functions are clearly in the range of U, hence we may consider B(X)
modulo the constants. The predual of this last space is

L(X)={n€ ll(X):gx p(x) =0}

Hence it suffices to show that || Tw||= A[|u || for all u € [,(X)o. The elements
with finite support, and rational values are norm dense in /;(X),, thus we may
consider such ones. Let p = 2=, n8, be such an element, with | ||= 2, |n|=
1. We may assume that n = n,/2m where m >0,n, 1 =1 = L, are integers, and
2m is the common denominator of the r,’s. Let us also assume that n,, - - -, n, are
positive, and that n..,,--+, n. are negative. Since Zi_,r, =0 we clearly have
Zi-im = Zi-s|m| = m. Consider the sets with multiplicity (A, a) and (B, b)
defined in the following manner:

A ={x}i-1, a(x)=n (for x, € A)
B = {xl}f‘=s+], b(x,) =-mn (fOI' X € B)

Then u = (1/2m)[Z.caa(x)b — 2:cab(x)d.], ie., 2mp is of the form (2.9).
Hence, as we observed, || Ti||= A || ||, and the theorem follows. O
Assume now that X is a compact metric space, and that F consists of
continuous functions {¢;}i-;. Hence the Y;’s, 1=i=k and Y are compact
metric spaces too. Let V;: C(Y;)—» C(X), 1=i=k and V:C(Y)— C(X) be
the restrictions of U, 1 =i =k and U to C(Y;) and C(Y) respectively, i.e.

(2.10) (Vg)(x)=glei(x)); gE€C(Y), xEX

and
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@) (V)= 3 el gEC(Y), xEX

As in the discrete case, we can derive information from the nature of the
adjoints V% and V* of V; and V:

2.12. ProrosiTion. Let u € C(X)*, G; CY,: and G CY be Borel sets. Then

(2.13) (Viu)(G) = u(ei'(G))
and
@14) (V*1)(G) = 2, u(e7(G)).

Proor. Routine.

We may consider the elements of [,(X) (resp. /,(Y:)) as Borel measures on X
(resp. on Y:), i.e. [L(X)C C(X)*. Observe also that by (2.3), (2.4) and Proposi-
tion 2.12 we have

2.15) VHIL(X)=T, and V*L(X)=T

The next proposition, which links the concepts of u.s.f., superpositions with
bounded functions and superpositions with continuous functions, follows at
once.

2.16. ProrosiTION. Let X be a compact metric space, let F = {¢;}i-, be a finite
family of continuous functions on X mapping it onto the spaces {Y:}i-,, and let
y=UL Y (disjoint union).

If each f € C(X) admits a representation

f)= 3 sle(x) with g€ C(Y)

then each f € B(X) admits a representation

f)= 3, 8lox)) with g€ B(Y.)
ie. Fis a us.f.

Proor. The assumption means that V maps C(Y) onto C(X); hence V* is
an isomorphism. Since T = V*/[,(X), T is an isomorphism too, and the
proposition follows from Theorem 2.8. d

We could not prove the converse of Proposition 2.16, i.e., that if F is a u.s.f.
then V maps C(Y) onto C(X) except in the cases k = |F|=1 (which is trivial)
and k =2.
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Let us state this question as a problem:
2.17. ProsiemM. Isittrue thatif Fisau.s.f. then V maps C(Y)onto C(X)?

In order to show that in the case k =2 the answer to Problem 2.17 is
affirmative, we exhibit a sufficient condition for a finite family F = {¢;}s., tobe a
u.s.f. on a set X, which in the case k =2 turns out to be necessary.

Let X be a set, and let F = {¢;}i-, be a family of functions on X. For a subset Z
of X and 1 =i=k define

(2.18) ZV={x€Z:|ZNoei' (pi(x))|=2}.

Let 7:2% —2% be the function defined by
k .
(2‘19) T(Z)= Q ZW

(where 2% denotes the set of all subsets of X).

2.20. THEOREM. If 7"(X) = for some integer n then F is a u.s.f.

More generally: Let X be a field of subsets of X so that Z® €3 for Z €3, and
l=i=k Ifr"(X) = for some n, then there exists a 0 < A =1 so that for all real
measures i on (X,3) W |Z A||lp| for some 1=i=k, where Wiy is the
measure on Y, = ¢;[ X] defined by Wiu(G) = u(e:'(G)).

Remark. If X is compact metric and the ¢;’s are continuous on X, then the
Borel field has this property since

Z0={x€Z:|ZN ¢ (@:(x))| 22} = {x € Z; diameter (Z N ¢." (¢:(x))) >0}
= Q {x € Z : diameter (Z N ;' (¢:(x))) = 1}

ie. Z”isan F, in Z
It follows from (2.10) and (2.13) that in this case |V*ul|Z A|u| for all
w € C(X)*. If we take X to be 2* we see that F is a u.s.f.

Proor. We use induction on n. If 7%(X) = (J the assertion vacuously holds.
Assume that for Z €3 7"7'(Z) =  implies that the assertion holds for Z, and
that " (X) = J. Observe first that for each 1 =i =k, o[ XV N @[ X\ X¥] =,
since for y, € ¢, [ X", |@:'(y:)| = 2, while for y,€ @:[X\XY] |@:'(y2)]|=1.

Set Z = 1(X). We have: J=1"(X)=1""(7(X))=7"""(Z). Hence by the
induction hypothesis our assertion holds for Z with some constant 0 <A = 1. Let
a be any real number 1/(1+A)<a <1,e.g. @ =2+ A)/(2+2X). Let u be any
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real measure on X with [|u || = 1 and denote by | u | the variation of . Consider
the following two cases:

() |1 [(Z)Z a. Thus | u/Z || Z a, and since our assertion holds for Z, it follows
that || Wi(x/2)||Z Aa. The total variation of w/X\Z does not exceed 1 - a,
hence the mass of u which lays outside Z can reduce || Wiu || by at most (1 - a).
It follows that | Wiu [|Z Aa — (1 — a).

(i) |u|(Z)<a. Then |u|(X\Z)zZ1-a Now X\Z=X\N:, XO=
UL, (X\X®). Hence |p |(X\X®)= (1 - a)k for some 1=i=k. Since ¢ is
one to one on X\ X and @[ X“]N ¢,[X1X“) =, it follows that || W[ =
(1- a)/k. Hence if we take A=A2k(1+ 1) then AT
min{(1 — a)/k, Aa ~ (1 — a)} and our assertion holds with A’. 0

2.21. LemMA. If|F|=2thenFisau.s.f. ifand only if r"(X) = & for some n.

Proor. Assume 7"(X)#Q for all nz0. Let x,€r"(X)=
(' XNP N (7" U(X))P. Since x; € (7" I(X)) it follows from (2.18) that there
exists some x; € 7"7'(X) with ¢.(x;) = ¢,(x;). By the same argument there exists
an x; € 777 X) with ¢x(x,) = ¢:(x3). In this way we construct points {x;}/-; in X
(x; € 7" 7Y(X)) with @1(x;) = @i(x;.,) for j odd, and @.(x;) = ¢:(x;.,) for j even.

Set u =37, (=1)8,. Then [[n[|=n and clearly [ Tu[=2, i = 1,2. Hence
| T | = (2/n)| i ||, and since n was arbitrary F is not a u.s.f.

The other direction has been proved in Theorem 2.20. O

Let now X be a compact metric space and let F = {¢,, ¢.} be a u.s.f. on X with
continuous elements. By Lemma 2.21 7" (X) = & for some n, hence, by Theorem
2.20 (and the remark following it) the operator V* is an isomorphism into, which
shows that the answer to (2.19) is affirmative in this case.

Let F ={¢;}i_; be a family of continuous real valued functions on a compact
metric space X. The Stone-Wierstrass theorem states that F separates points if
and only if the closed algebra generated by F is C(X).

An affirmative answer to Problem 2.17, combined with Proposition 2.16 would
imply the following Stone-Wierstrass type theorem: F is a u.s.f. if and only if
C(X) is the sum of the closed algebras each of which is generated by a single
element of F.

In [11] Ostrand proved the following:

2.22. THEOREM. Let X =X,X X; X --X X,, where X, are compact metric
spaces with dimX, =n, 1=i=m and n =2 n. Then there exist functions
@1, @2 in C(Xi) such that each f € C(X) is representable as
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2n+1t

flx, - xm) = Zl gleix)+ @i+ -+ oT(x™)
with g € C(R).

Combining a characterization of dimension presented in [11] with a technique
from [12], one can prove that such families {¢;}, 1=j=2n+1,1=i<m are
residual in [II%, C(X))]***' (i.e. are complemented there by a set of first
category).

By Proposition 2.16, Ostrands theorem implies the following (just set i =1
and dim X = n = n,):

2.23. THEOREM. Let X be an n-dimensional compact metric space. Then there
exists a u.s.f. F C C(X) with | F| =2n + 1. Moreover, such families are residual in
C(x)2n+1.

As stated in the introduction it seems that the number 2n + 1 in Theorem 2.23
is the best possible (see Conjecture 1.2). In the next sections we prove this for
n=2234.

2.24. THEOREM. Let X be a compact n-dimensional metric space
(n=2,3,4). Then no family F CC(X) with |F|=2nis a u.s.f.

3. The main lemma

In this section we state a lemma which gives sufficient conditions on a family F
consisting of 2n real continuous functions on a compact metric space to be
non-u.s.f. We shall apply the lemma in the proof of Theorem 2.24 in Section 5.
Since the proof of the lemma is technical and involved, we devote a special
section to it (Section 6) at the end of the paper.

In order to state the main lemma we need some definitions and notation.

3.1. DeriNiTioN.  Let X and Y be metric spaces, and let ¢ : X— Y be a
continuous function. ¢ will be called interior if for each open U CX, ¢[U] has
non-empty interior in Y. (Observe that an interior function ¢ need not be an
open function, i.e. we do not demand that ¢[U] will be open for open U,
@(t)=1" on [~ 1,1] is interior but not open.)

3.2. Dermvrmion.  For an integer k, let [k] denote the set {1,2,-- -, k}. a, b, ¢,
will denote subsets of [k}, and |a| the cardinality of a.

3.3. DerniTioN.  Let X be a compact metric space, let F = {¢,}l-, CC(X)
and let a C[k]. We denote by ¢, the function
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¢.: X—>R*=]] R

i€a

defined by

@a(x)= (@i (x), @i (x), - @ia(x));  x€X
where a ={i), "+, i}

RemARk. Observe that in Definition 3.1 of an interior function it is important
to specify the range space Y into which ¢ maps X. In the sequal we shall use this
concept for the functions ¢, defined in Definition 3.3 and it is worth noting that
these mappings were defined as mappings from X to R'*". Hence when we say
that ¢, is interior, we mean interior as a mapping from X to R'*' (and not, e.g.,
as a mapping from X to ¢.[X]).

3.4. DeriniTion.  Let X be a compact metric space, let F = {¢;}:2, be a family
of 2n elements of C(X), and let a, b, ¢ C[k].

(i) The triple (a, b, ¢) will be called an interior triple w.r.t. F if the following
conditions hold:

1. The sets a, b, ¢ are mutually disjoint.

2. jaj+|bj=|a]+]|c|=n.

3. The functions ¢,u, and ¢, are interior.

(i) A sequence {(a, b, ¢:;)}¥-, of interior triples w.r.t. F is called an interior
chain w.rt. F if foreach 1=2i=k -1, 2n]\(a Ub; Uc)= a;..

3.5. Main LemMma. Let X be a compact metric space, and let F =
{@}i2, CC(X). If for each integer k >0 there exists an interior chain {(a,, b, ¢.)}-,
of length k w.rt F, then F is not a u.s.f.

3.6. REmark. In the proof of 3.5 to be presented in Section 6, we will obtain
more precise information: we will see there that if there exists an interior chain
{(a; bi, c;)}-1 w.r.t. F, then there exist k? points {x!},=;;=« in X such that the
element u € [,(X) defined by u = X, ;(— 1)’ 8,; has the property || Tiu || < 8k for
1=1=2n (where T; is the operator defined in (2.3)). Since |[x| = k> and
[ Tw || = Z32 || T || it follows that || T || <2n - 8k = (16n/k )| u ||. If this holds for
arbitrary k, then. T is not an isomorphism, and by Theorem 2.8 F is not a u.s.f.

4. On the dimension of projections of Cantor manifolds in R™

The main aim of this section is to state and prove a thecrem concerning the
title of the section. This theorem generalizes a theorem of S. Mardesic [9}] (see
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also [10]), and in the proof we use the technique established there. We also recall
some known theorems on mappings which lower dimension.

Let m >0 be an integer. We set R™ = R; X R; X - - X R,, where R, is the real
line. We use again [m] for {1,2,---, m}.

4.1. DerFINiTION.  Let a be a subset of [m]. The projection P, from R™ to
R'*!'is the mapping

Po(x1, X2, 045 Xm ) = (Xit, Xiz, " 5 Xya)  §j € @
If a subset W of R™ is understood, we may use P, instead of P,/W.
4.2. LEmMA. Let X be a compact subset of R", and let 1 = k = n be an integer.
Let Y be the subset of R* defined by
(43) Y={yeR":dim[(y X Rex X RerX X R)INX]=n—k}.
If Y is of second category in R* then dim X = n.

4.4. REMARK. It is not hard to show that Y is an F, in R* (see [5] or [6]).
Thus the three properties
(i) Y is of second category in R
(i) Y has non-empty interior in R,
(i) dimY =k
are equivalent.
Hence one could state the lemma as:
(4.5) dim Y = k if and only if dim X = n.
(Clearly dim X = n implies dim Y = k.)

Proor. Let {B/}i.; be a sequence of (n— k)-dimensional cubes in
Ry+1X - -+ X R, which forms a basis for the topology of this space. Foreach [ = 1

set

4.6) S ={yeR*:yxB CX}
and

4.7 S= C) S

We claim that Y CS.
Indeed, let y€Y; then dim[(y X RiriX---XR,)NX]=n—k hence
(y X Risy X -+ X R,)N X has non-empty interior in y X Ry, X -+ X R,, ie.
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(y XReoy XX R,)NX Dy X B, forsome ! =1. Then y X B, CX, and by (4.6)
yESCS.

Now, since Y is of second category, so is S. Hence there exists some ! = 1 so
that S, contains some k cube D. Since y X B; CX for each y € S, we also have
S: X B, CX, and by the compactness of X, §; X B,C X too. Hence D X B, C X,
and dim[D X B;] = k + (n — k)= n. This proves the lemma. O

In his paper [9] S. Mardesi¢ proved the following theorem (see also [10]):

4.8. THEOREM. Let W be an n-dimensional compact subset of R™ (n = m).
Then there exists a subset a of [m] with |a|=n so that dim P,[W] = n.

Our next theorem is in the same direction. Let us recall that for a topological
space W, dcW = n means that no closed subset of dimension = n — 2 discon-
nects W. (See [8] for more information on dc.)

A compact space W is called an n-dimensional Cantor manifold if dim W =
dcW = n.

Each n-dimensional compact metric space contains an n-dimensional Cantor
manifold (see [4, p. 93]).

4.9. THEOREM. Let W CR™ be compact, with dcW = n; n = m. (In particu-
lar, W may be an n-dimensional Cantor manifold.) If dim P,[W]=1 for some
1 =i = m then there exists a subset a of [m] with |a|=n—1, and i& a so that
dim Py [W] = n

Proor. Since W is connected and dim P.{fW]=1 we get that P[W] is a
closed interval [a, 8], in R.

Let @ <t < B; since t disconnects P,{ W], P;'(t) disconnects W, and since
dc W = n it follows that dim P;'(t) = n — 1. By Theorem 4.8 there exists a subset
a of [m]\{i} with |a|=n—1 so that dim P,[P;'(t1)}=n—1.

For a C{m]\{i} with |a|=n—1 set

(4.10) T(a)={t:a <t<B,dimP.[P;'(t)]=n—1}.

It follows that U, T(a)D{t:a <t < B}, where the union is taken over all
subsets a of [m]\{i} with [a|=n-1.

Hence there exists some a such that T(a) is of second category in (a, 8). Set
X = Pu[W]. By applying Lemma 4.2 with k =1 and Y = T(a) we get that
dim Pyyo.[W]=n. O

Let us remark that the conditions of Theorem 4.9 cannot be weakened by
assuming only that dim W = n, or even dim, W = n for all w € W instead of
dcWzn
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The following example, of a compact subset W of R> with dim,, W = 2 for all
w € W, and dim P,{ W] = dim P, W] = dim P,,{ W] = 1, illustrates this fact,
4.11. ExampLE. Set
4.12) [={(xy,2):0sx=1;y =z=0}CR’

and for each dyadic number k.27" with k odd set

(4.13) Wiarn={(x,y,2):x=k.27",0=sy=2",0=z=2""}
and
(4.14) w=UW..-UTL

One can easily verify in Fig. 1 that W has the desired properties.

|-

K> prad
_
2 :<>
PEa ~—
y x| T~
Fig. 1

There is a natural extension of Theorem 4.9, which we could neither prove nor
disprove. Let us state it as a problem.

4.15. ProBLEM. Let W C R™ be compact, with dc W = n, n = m. If for some
k =n dim P W] =k, does it follow that there exists an a C[m]\[k] with
la|=n~-k so that dim P u.[W]=n?

Observe that Theorem 4.9 is the case k = 1. If Problem 4.15 has an affirmative
answer then our proof of Theorem 2.24, which will be given in the next section,
works for every n =2 (and not only n =2,3,4).

We conclude this section by recalling some definitions and theorems concern-
ing mappings which lower dimension of compact metric spaces. The theorems
are valid for closed continuous mapping of general metric spaces, but we
formulate them only for continuous mappings of compact spaces.
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DeriniTION.  Let X be compact metric, and f a continuous function on X.
dimf is defined by

(4.16) dimf = sup dim f~(y).

The following is a well known theorem of Hurewicz ([4, p. 91]).

4.17. THEOREM. Let X be a compact metric space, and let f be a continuous
function on X. Then

(4.18) dim X =dim f[X]+dimf.
This theorem can be extended in two directions: first the trivial one.

4.19. THEOREM. dc X =dcf[X]+dimf.
(See [8] where it is stated without proof.)

Proor. If C disconnects f[X], then f'(C) disconnects X. Since C =
fIf I(C)] we get by (4.18)

(4.20) dim C =dim f[f (C)]| =z dimf'(C) - dim
i.e.
(4.21) dimf(C)=dim C + dimf.
Hence if some set of dimension n disconnects f[X], then some set of
dimension = n +dim f disconnects X, and the theorem follows. d
Define
(4.22) Df ={y € f[X]:dimf(y) = dim X — dim f[ X]}.

Theorem 4.18 just states that Df# . The following is a better estimate on
dim Df:

4.23. THEOREM (Jung-Keesling). dim X =dim Df +dimf. (See [5] and [6]
for a proof.)

5. Proof of the non-existence of u.s.f. of cardinality 2n for n-dimensional
spaces n =2,3,4

The non-existence of u.s.f. of cardinality 4 for two-dimensional spaces has
been established in [13], in a different setting, but with the same underlying
ideas. Since by using the results of Sections 3 and 4 the proof becomes short, and



Vol. 29, 1978 UNIFORMLY SEPARATING FAMILIES 77

for the sake of completeness, we repeat the proof here. We need first some
lemmas and notations.

S5.1. DerintTioN. Let X be an n-dimensional Cantor manifold and let
FCC(X)be aus.f. Wecall F a minimal u.s.f. if no subfamily of F is a u.s.f. on
some n-dimensional Cantor manifoid contained in X.

5.2. LEeMMA. Let X be an n-dimensional compact metric space, and let
F CC(X) be a finite u.s.f. Then there exists an n-dimensional Cantor manifold
X'CX and a subfamily F' CF such that F' is a minimal w.s.f. on X'.

We omit the simple proof.

5.3. LemMA. Let F ={@}i., be a u.s.f. on a set X. Let a, b be subsets of [k]
with aNb=C and a Ub = (k). If ¢, is constant on a set L CX, and Z C
@5 (@ [LD\L, then {¢.}ic. is a u.s.f. on Z.

REMARK. Here ¢, 1 X = Ilie. Y where Y, = ¢;[ X] is defined as in Definition
3.3. No topology is assumed in this lemma.

Proor. Let f be any element of B(Z). Let f € B(X) be such that filz=f
and f/L =0. Since F is a usf. on X, f is representable as f(x) =
ZicaBi(@(x)+Zicrgi(ei(x)), g EB(Y), 1=i=k

¢ isconstanton L, i.e. @ [L]=(y:, ¥, """ ¥.) and we may assume without
loss of generality that gi(y.»l) =0 for i; € a. Hence, for x € L we have:

0=f(x)= 2 g(@ )+ 2 g(e(x) = 2 alex)).

Since Z Co;'(ps[L]), to each 2z €Z there correspond some x € L with
¢s(z) = ps(x). Hence Zic, g (¢i(2)) =0 for all z € Z. Thus, for z € Z we get

f2)=12)= T 80 @)+ 3 s(e(2)= T s()

and by Theorem 2.8, {¢:}ic. is a u.s.f. on Z O

5.4. LEMMA. Let X be an n-dimensional Cantor manifold (n = 2) and let
{@:}5.) CC(X) be a minimal u.s.f. Then foreach a C[k],|a|=k —1,dim¢e, =0
(see (4.16)).

Proor. We may assume that a =[k —1]. If dim¢, >0 then there exists

some point @ = (@, **, ax-1)in R* ' withdim¢.'(@)= 1. Set L = ¢.'(a). Since
{@:}i=xisau.s.f. and {¢:}:<, 1 are constant on L, it follows that ¢, is one to one on
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L.Hence ¢, /L is a homeomorphism, and L and ¢,[L ] are one dimensional. Thus
¢«[L] has a non-empty interior in the line, and ¢.'(¢[L]) and also
¢ (e [LD\L have non-empty interior in X. Hence there exists an n-
dimensional Cantor manifold Z Cei'(e[L])\L. By Lemma 5.3, {¢:}ica is a
u.s.f. on Z —contradicting the minimality of {¢:}i-,.

We turn now to the case n = 2.

5.5. LEMMA. Let X be a two-dimensional compact metric space and let
F ={¢1, ¢} CC(X). Then F is not a u.s.f.

Proor. If F is a us.f., then ¢,: X— R? is a homeomorphism. Hence
dim ¢,[X]=2in R? and it follows that ¢,,[ X] contains a square whose vertices
are (a1, B1) (az B2) (a2, B1) and (a,, B:). Let xi,x,, z,,z, be points of X so that

e1x1) = (a1, B1), @12(x2) = (a2, B2), 012(21) = (a2, B1) and ¢12(25) = (ay, B:). Then
o{x1, x2}] = @:[{z1, z2}] for i = 1,2, and F is not a u.s.f. O

5.6. CorOLLARY. Let X be a two-dimensional Cantor manifold and let
F={@}i-1 be a u.s.f.,, then for each i,j € [3] dim ¢, = 0.

Proor. From Lemma 5.5 it follows that F is a minimal u.s.f. Hence by
Lemma 5.4, dim ¢, = 0. 0

5.7. CoroLLARY. With the notation of Corollary 5.6 each ¢, is interior.
Proor. Since dim ¢; =0, we get by (4.18) that
dim ¢;[U] 2 dim U — dim ¢; = dim U

holds for all U CX. In particular, if U CX is open, then dim U =2 hence
dim ¢; U Zdim U =2 in the plane, and it follows that ¢;[U] has non-empty
interfor." O

5.8. LemMA. Let X be a two-dimensional compact metric space, and let
F={¢.}-.,CC(X). Then F is not a u.s.f.

Proor. Assume F is a u.s.f. on X. Since X contains a two-dimensional
Cantor manifold we may assume that X itself is such. By Corlllary 5.7 the
mappings ¢, @13, ¢ are all interior. Consider the family F’'={¢}{.; where
®.= ¢,. It follows that the triples (1,2, 3) and (4, 2, 3) are interior w.r.t. F' (see
Definition 3.4) (we write i instead of {i}) and the sequence of triples

t (4.18) is applicable for U, since U contains a compact subset V with dim U = dim V. The same
remark applies to the proof of Lemma 5.9.
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(1,2,3), 4,2,3), (1,2,3), 4,2,3),- -~

is an interior chain w.r.t. F' of arbitrary length. By the main lemma F' is not a
u.s.f., and hence neither F is such. d

5.9. LEMMA. Let X be a two-dimensional Cantor manifold and let F =
{¢.}i-.CC(X) be a u.s.f. There exist a permutation w of [4] and a two-
dimensional Cantor manifold X' C X such that the restrictions to X' of the four
functions

D n@),70)s P r@), 7@ Pr),n(3) € (). 7

are interior on X'.

Proor. By Lemma 5.8 F is minimal. Hence by Lemma 5.4, for all a C[4],
|la|=3 and dime, =0. By Theorem 4.19 we get that for all U CX with
dceU =2, dce.[U]Zdc U ~-dimeg, =2.

Let us see first that two functions of the form ¢; with a common index i, e.g.
¢12 and ¢, 5, cannot both reduce the dimension of a two-dimensional subset of X.
Indeed, assume dim ¢.[U]}=dim¢;[U] =1 for some U CX with dim U =2.
Since each such U contains a two-dimensional Cantor manifold, we may assume
that U is such (clearly dimg,;{U]=0 is impossible). As we remarked
dc @13 U] = 2. The two-dimensional projeetions of ¢.,5[U] in R? are ¢,,[U],
¢13[U] and ¢2[ U], and by our assumption two of them, ¢,,[U] and ¢.;[U], are
one dimensional. It is also clear that dim ¢,[U] = 1 (otherwise ¢, is constant on
U and {¢:}i-234 is a us.f. on U contradicting Lemma 5.8). Hence we get a
contradiction to Theorem 4.9.

We come now to the proof of the lemma: if all the functions ¢; are interior on
X then there is nothing to prove. Otherwise, one of them, say ¢.3, is not interior,
i.e. there exists a U C X open such that int ¢, U] = & in the plane. Let X' CU
be a two-dimensional Cantor manifold. Then, in particular dim @[ X']=1.
From the above discussion it follows that for each function ¢; with a common
index with ¢,;, and each U C X’ open dim ¢, [U] = 2 holds, i.e. the interior of
@;{ U] in R?is not empty. Hence the functions ¢y, @13, @as, @43 are all interior. [J

PrOOF oF THEOREM 2.24 FOR n =2. Let X be a two-dimensional compact
metric space, and let F = {¢:}{-; CC(X). If F is a u.s.f., then by Lemma 5.9 we
may assume that X is a two-dimensional Cantor manifold, and that ¢z, ¢13, @24,
¢34 are all interior on X, Hence, the triples (1,2, 3) and (4, 2, 3) are interior w.r.t.
F and the sequence of triples
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(1,2,3), (4,2,3), (1,2,3), (4,2,3),- -

is an interior chain w.r.t. F of arbitrary length. By the main lemma F is not a
u.s.f. g

Before proving Theorem 2.24 for n = 3, we still need more information on the
case n =2.

5.10. Lemma. Let X be a two-dimensional Cantor manifold, and let F =
{¢.}i-1 CC(X) be a minimal u.s.f. Then for each 1 =i = k there exist 1 =, <j, =
k, i # i# > so that dime,[X]=dime,[X]=2.

Proor. We may assume that i = 1. By Lemma 5.4 dim ¢ 4-,; = 0. Hence by
Theorem 4.19 dc ¢ («-y[ X] = 2. Clearly ¢, is not constant on X (otherwise {¢;}t-,
would not be minimal) and therefore dim ¢,[X]= 1. Hence by Theorem 4.9
there exists some j, € [k — 1], ji # i so that dim¢,; [X]=2.

Set a = ([k —1]\{j}) U{k} then |a|= k — 1, and again by Lemma 5.4 dim ¢, =
0, and by Theorem 4.19 dc ¢.[X] = 2. Applying the same argument there exists
some ;€ a, j,7# i so that dim¢,; =2. Clearly j, # j,; and we are done. |

5.11. Lemma. Let X be a compact metric two-dimensional space, and let
{o.}-1 CC(X) be a u.s.f. on X Then there exist b,c C[K] with b N ¢ = and
[bl=|cf=2 so that dim ¢,[x] = dim ¢.[x] = 2.

Proor. By Lemma 5.2 we may assume that X is a two-dimensional Cantor
manifold, and that {¢;}i-, is a minimal u.s.f. for X. Let us call a pair (i,j) C[k] a
good pair if dim ¢ (. [x] = 2. Clearly (by Theorem 4.8, for example) there exists a
good pair. Assume that it is (1,2). By Theorem 2.24 for n = 2, k = 5. By Lemma
5.10 there exist 1 = j, <j, = k so that (3,},) and (3,}.) are good pairs. If j, # 1 or
J2#2, then (1,2) and (3, j,) or (3, ;) can be taken as b and c¢. If j,=1 and j, =2
then (1,2), (1, 3) and (2, 3) are good pairs. By applying Lemma 5.10 again, there
exist 1 =, <j, =k so that (4,],) and (4, j,) are good pairs. If j # 1 or j, #2 we
can take b =(1,2)and ¢ = (4,ji) or c = (4, ). If j; = 1 and j, = 2 then (1, 4) and
(2,4) are good pairs, and we may take b = (1,3) and ¢ = (2,4). O

We come now to the case n =3.

5.12. LemMMa. Let X be a compact three-dimensional metric space and let
{e.}i-1 CC(X) be a u.s.f. for X. Then for each 1 =i =6 there exist b, c C[6] with
|b|=|c|=2 and bNc = so that

dim ¢ iyucfx] = dim ¢ yus[x] = 3.

ProOF. We may assume that X is a three-dimensional Cantor manifold.
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Observe first that no family F = {¢;}]-, CC(X) can be a u.s.f. for X. Indeed, by
Theorem 4.17 there must be a t € ¢s[ X ] with dim ¢5'(t) = 2, and if {.};-, is a
u.s.f. for £, then {¢ }i-, is a u.s.f. for ¢5'(t) contradicting Theorem 2.24 for n = 2.

[t follows that none of the ¢;’s, 1 =i =6 is constant on X. Let us prove the
lemma for i = 6. By the above remark ¢¢[X] is an interval [, 8]. Each @ <t < 8
disconnects @[ X}, hence ¢.'(r) disconnects X. Since X is a three-dimensional
Cantor manifold it follows that dim ¢ '(1) = 2. Clearly {¢:}i-, is a u.s.f. for ¢'(¢).
By Lemma 5.11 there exist b,¢ C[5] with |b|=]c|=2 and b N ¢ =< so that
dim ¢,[¢s'(t)] = dim ¢ [¢5'(¢)] = 2. For each pair b,c C[5] with |b]=]|c|=2
and b N ¢ = set

(5.13) T(b,c)={t € ps[x]:dim ¢, (ps'(1)) = dim ¢.(¢5'(1)) = 2}.
It follows that
%) T(b,c)D{t:a<t<p}.

Hence there exists a pair b, ¢ so that T(b, ¢) is of second category in [, B]. The
lemma now follows from Lemma (4.3) taking X = ¢ u:{X] (resp X = ¢ o[ X])
and Y =T(bc). 0

5.14. Lemma. Let X and {¢. )=, be as in Lemma 5.12. Then there exists a
Y C X so that for each 1 =i =6 there exist b,c C[6]\{i} with |b|=|c|=2 and
b N ¢ = such that o us and ¢ are interior on Y.

Proor. We may assume that X is a three-dimensional Cantor manifold.
Recall that for ZCR", int Z# J and dim Z = n are equivalent conditions.

Choose an index i, e.g. i = 1. If for all b C{2,3,---,6} with |b| =2, and all
open U CX dim ¢ yu,[U] = 3 then we do nothing. If for some b, C{2,3, -, 6},
|b]=2and U CX open dim ¢ 0, [U] < 3, we set U = Y,. If there exist open
U CY, and another b,C{2,3,---,6}, |b,| =2 with dim ¢ 0, U] <3, we take
U=Y.

In this way we continue as far as we can. Suppose we end with b, and Y.. It
follows that for all 1 =j =k, dim ¢ us[ Y] < 3. Let X, be a closed ball in Y,.
Then dim X, = 3. Clearly {¢:}i-, is a u.s.f. for X;. By Lemma 5.12 there exist
b,c C{2,3,--.-,6} with |[b|=|c|=2 and b N ¢ =T so that

dim (P(l)uh[XI] = dim @ mue [X]] =3,

Hence b, c & {b, - - b.}. If U is open in X, then its interior in Y, is not empty. It
follows that dim ¢ ,.,[U]=dim ¢, [U] =3, because else we could take U =
Y., and b = by, (or ¢ = bi.1), and continue the above procedure.
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Now we take another index, e.g. i =2, and operate on X, in the same manner
with i =2 to get X,. Passing on all the six indices i = 1,---,6 we get X,, and
clearly X, can be taken to be Y. ]

5.15. ProoF oF THEOREM 2.24 FOrR n =3. Let X be a three-dimensional
compact metric space, and let F = {¢:}i-, be functions in C(X). If Fis au.s.f. on
X, then by Lemma 5.14 there exists a closed Y CX so that foreach1=i=6
there exist b, ¢ C[6]\{i},|b]|=]|c|=2,b N c =, and such that ¢, and ¢, are
interior on Y. It follows that there exist interior chains w.r.t F of arbitrary length
(relative to Y).

Indeed, choose any index 1=i =6, e.g. i = 1. Set a, ={1}. Then there exist
b,, ¢, as above. (a,, by, ¢;) will be the first triple. Next set a,=[6]\a, U b, U ¢,
then |a,| =1, i.e. a,={j} for some 1=j =6. Choose b,, c, C[6]\a, with |b,|=
|c.| =2, b,N ¢, = and so that ¢ .0, and ¢ 4,u., are interior (on Y). (az, by, ¢,)
will be the second triple in the chain. Setting a; = [6]\a, U b, U ¢, we continue.
By an obvious induction the chain can be continued as long as we please. Hence
by the main lemma of Section 3, F is not a u.s.f. on Y, which is a contradiction. (J

Let us turn to n = 4. First we prove a lemma of Lemma 5.12’s type.

5.16. LEmMa. Let X be a four-dimensional compact_metric space, and let
{@.}}-1CC(X) be a u.s.f. Then for each a C[8] with |a|=2, there exists
b,c C[8\a, [b|=]|c|=2, bNc =T so that

dim @ 4us[ X] = dim @ .. [ X] = 4.

Let us first show how the case n = 4 of Theorem 2.24 follows from this lemma.
The lemma will be proved later.

5.17. PrROOF OF THEOREM 2.24 FOR n=4. Let dimX =4, and {¢:}}-; be a
u.s.f. on X First, using Lemma 5.16 we can show, in the same way as in the proof
of Lemma 5.14 (replacing i € [6] by a C[8]), that there exist Y C X such that for
each a C[8], |a| =2, there exist b,c C[8]\a,|b|=]|c|=2, bNc =0, so that
®aus and @ au. are interior on Y. It follows, as in the case n =3 (with |q,| =2,
instead of |a;|= 1), that there exist interior chains of arbitrary length w.r.t. F
and the theorem follows from the main lemma of Section 3. a

5.18. ProOF OF LEMMA 5.16. Let a C[8] with |a|=2. We claim first that
dim ¢, = 2. Indeed, by Theorem 4.17

dimg, 2dim X ~dimg,[X]=Z4~-2=2.
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On the other hand dim ¢, > 2 would imply the existance of an a € ¢,[X] so that
dim ¢ ;'(a) = 3, but the six functions {¢; };csa form a u.s.f. for ¢ ;'(a) contradict-
ing Theorem 2.24 for n = 3. Hence dim¢, = 2.

Set

(5.19) D, ={a € ¢.[X]:dim¢.'(a) = 2}.
By Theorem 4.23 we get
(5.20) dmD, Z2dim X —dim¢, = 2.

Hence D, contains an open plane set.
For each b,c C[8)\a, |b|=]|c|=2, bNc =, set

(5.21) T(b,c)={a € D, :dim ¢,[¢2'(a)] = dim ¢.[¢.'(a)] = 2}.

By Lemma 5.11 we get that

D.C U T(b,c).

bc

Hence there exist some b, c so that T(b,c) is of second category in R*. By
Lemma 4.2 (with X = @[ X] (resp. X = @.ulX]), Y =D, and k =2, n = 4)
we get

dimg .| X]=dimg.o[X]=4. O

ReMark. The natural approach to prove Theorem 2.24 for n >4 is to use
induction to show that if {¢,}iZ; is a u.s.f. on an n-dimensional compact metric
space X, then there exists a 1=k = n so that for each a C[2n] with |a|=k
there exist b,c¢ C[2n]\a with |b|=|c|=n—k and b N ¢ =& such that

dim ¢ .up[X]=dim ¢ .o [X] = n
From such a situation one can continue as we did in the cases n = 3,4. (Observe
that we did the same, with k =1 for n =3 and k =2 for n =4.)
6. Proof of the main lemma

We shall prove the main lemma in its more precise setting 3.6; throughout this
section we assume that X is a compact metric space, and that F = {¢,}i2, C C(X).

6.1. LEMmA. If there exists an interior chain {(a;, b, ¢;)}i-, w.r.t. F, then there
exist k* distinct points {x1}isi;=« in X such that for all 1=1=2n, | T | <8k,
where p =225 (= 1) 8, € L(X). (T is the operator defined in (2.3).)
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As observed in Remark 3.6, Lemma 6.1 implies the main lemma.

Before proving Lemma 6.1, let us examine an example which may clarify the
nature of the points {x!} to be constructed in the proof of Lemma 6.1.

Let {(a;, b, ¢;)}/<, be an interior chain w.r.t. F. (The only properties of an
interior chain which are relevant here are that ¢; U b, U ¢, U a,., = [2n], and that
these sets are mutually disjoint).

Let {x!}, 1 =i,j =k be k* distinct points in X so that

(1) @ (x) = ¢y (xi.) forall 1 =j =k and i odd.

(i) ¢c(xi)=¢c(xl.)forall I=j=k and i even.

(iii) <pu‘(x{f"1)= ¢ao(xi)forall 1=j=k and I =ik

Figure 2 illustrates the situation. x iy or d|means ¢;(x) = @u(y).
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We claim that if 4 € [,(X) is defined by p ==, ,(—1)'*'8,, then || Tin || <4K
forall 1 =1=2n. Indeed, fixan I, 1 =1 =2n. Let x! be an “interior” point of the
“matrix” A = {x}, 1 =i, j =k}, i.e. 1<i, j<k Then ! isan element in one and
only one of the sets a, b, ¢;, a,.,. It follows that the correspondence x| — ay(x/)
defined by

[ X ifl€a
. J XC—( 1y ifle b,-
(*) oi(xi)=

X{'(—l)' iflEc,

if | € a;.,
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is well defined on the “interior” A’ of A. It is also clear that if both x! and ai{x})
are in A’, then o3(x/)=x]. Hence o, can be extended to an idempotent
permutation of D, = A’ U a;[A’]. lf o:(x!) = x'z for some x! € D, then by (*) we
have that (= 1Y"78,(x))+ (= 1)e"08,(x ";) =0. Hence ‘D, can be decomposed
into disjoint pairs, namely {x!, &;(x?)}, x| € D, so that the contribution of each
pair to the norm of Ty is cancelled. It follows that the only points of A which
may contribute to | Tu || are the points of A \ D,, whose number is smaller than
4K. Hence | Ty || < 4K.

The points {x!} to be constructed in the proof of Lemma 6.1 will enjoy most of
the properties of the points {x!} considered above i.e., that “most’’ of the points
{xi} do not contribute to the norm of T\ for all | €[2n].

Before the construction we still need a definition and two lemmas whose proof
will be brought after that of Lemma 6.1.

6.2. DEFINITION.  Let a, b, ¢ C[2n].
(i) A sequence {x}i=x CX will be called an alternating sequence w.r.t.
b,c ({b,c a.s.) in short) if

05 (x:) = @ulx..,) for i odd.
and
@ (x:) = @ (x4} for i even

holds.

(ii) A pair of sequences {x;}%,, {x.}{7... will be called a doubly alternating
sequence W.r.t. a; b,c ((a; b,c d.a.s.) in short) if both {x;}l, and {x;};7,.., are
(b,c as.) and, in addition, ¢.(x;} = @u(X2+1-;) holds for 1 =i = m. Figure 3

a

T 2
b b
o]
2 n
C C
Q
3 10
b b
0
Xq 9
¢ c
o
5 8
b b
o
€ X7

Fig. 3
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illustrates the concepts of (b,c a.s.) and (a; b, ¢ d.as.). xl—d—xz or dxl‘ means
@al%1) = @a(x2). :

(iii) Let G’, G be subsets of X, and let k be an integer. We use the notation
G’ < G (rela; b,c; k) to state that G’ C G, and if {a;}., are points in ¢,[G'] so
that a; # o; for i even and j odd, then there exists a (b, ¢ a.s.) {x;}{~, in G with
ea(x)=a, 1si=sk

6.3. Lemma. Let (a, b, c) be an interior triple w.r.t. F.

(i) For each integer k >0, each apen G C X contains some open G’ so that
G'< G (rela; b, c; k).

(ii) Each open G CX contains an {a; b,c d.as.) of arbitrary length.

6.4. LEmMA. Let {(a;, b;, ¢;)}{-1 be an interior chain w.r.t. F. Then there exist
open sets {G;}}-, and {G}}-, in X so that the following holds:

() G;<G; (rela;; b,c;; k), 1=j=k.

(i) ¢u[Gi1]Cea[G]l, 1<j=k.

(iii) The sets {G,};-1 are mutually disjoint.

We shall first prove Lemma 6.1, and then Lemma 6.3 and 6.4.

ProoF OF THE MAIN LEMMA.  Let {(a, b, ¢;)}-., be an interior chain w.r.t. F.
Let {G;};-, and {G}/-; be open sets in X enjoying the properties (1), (ii), (iii) of
Lemma 6.4. We shall construct the points {x{} so that for each 1=j =k the
points {x!}i_, will be contained in G,

For j =1, let {al}i., be k distinct points in ¢.[G1). Since G1< G, (relay;
by, cy; k), there exists in G, a (b, ¢, a.s.) {x}}{-, with Pa(x D=al, 1=i=k,
hence the points {x i}, are distinct.

For j =2, set ai=¢,(xi), I=i=k By Lemma 6.4(ii) ¢.[G]Ce.[Gi],
hence {ai}i-) C¢.,[G}]. Now we would like to apply the fact that G;< G, (rel
az; bycz; k) to construct a {b,, c; a.s.) {x%, in G, with ¢a(x7) = a’; but to do
this we have to ensure that a} # @} for i; even and i, odd (see Definition
6.2(iii)). In order to attain this, we remove from {a3})., a maximal number of
pairs af = ai, i even and i, odd.

In the set of remaining a’s, a?’s with i even differs from a%’s with i odd.
Assume that the number of removed pairs has been m,. Then the number of
remaining a?’s will be r, = k ~2m,. Since we removed pairs of a?’s, one with i
even and the other with i odd, we may assume without loss of generality that the
remaining a?’s are {a’}iz,. Hence, there exists a (b,, ¢, a.s.) {x%}z, in G, with
¢o(X7)=ai, 1=i=r. By Lemma 6.3(ii) we can choose in G,\{x3}z, an (a;
b, ¢; d.a.s.) {x3}iZ74, {x 3} «,,sm,+1. This completes the construction of the points
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{x3}i-1 in G,. The points {x/}i-, for j = 3,4, -3, k are constructed similarly. We
may use induction: assume that the points {xi}‘.,--{x®'}<, have been
constructed with {x/}/_,C G, 1 =j = j,— 1. Set ale= ¢ ,(x¥7"). By Lemma 6.4(ii),
{a i} 1Coaq Gl Remove from the ai’s all the pairs of pomts a?, a with i
even, i 0odd, and a(°= @, and assume that the remaining a”s are {a Ve, where

i, =k—2m,, m; being the number of removed pairs. Since G, <G, (rela,;
b,,c,,k)wecanﬁnda(b,,c as){x %Yo, in G, , With (p,,,(x )—a.° 1<t<r
In G, \{x "}.’“. we pick an {a, 3 biycy, das.) {x g ,"’,J too {xdeicy, J+mi+1> and the
points {x}‘_, are constructed. By Lemma 6.4(iii), {x/}.N {x”}" = for
j1# J2, and for a fixed j, x| # x{ for i, even and i, odd by our construction, hence
p =2Z,;(—1)"8, is a well defined element of norm k? in I,(X).

We claim that || Ty || < 8K for all 1 =1 =2n. Indeed, fix an I, 1 =] =2n. Set

A={x:1=1i, j=k}, and

A'={xl1<j<k, i&{,r,+ 1, +m,r,+m+1,k}}.

Asin the example, we shall construct an indempotent permutation o; on a set D,,
with A’ CD, CA, so that if o1(x}) = x3, then (= 1)"/ + (= 1) =0, and ¢,(x%) =
@i(x io)-

It will foliow, as in the example, that D, can be decomposed into disjoint pairs
(namely {x}, ov(x})}, x} € D) so that the contribution of each pair to the norm of
Ty is cancelled. Hence, the only points of A which may contribute to the norm
of Tiu are the points of A\D. But A\D,CA\A' and [A\A'|=
k +k +6(k —2)<8K. Thus | Tiu || < 8K.

As in the example, we shall define o, on A’ first, and then take D, =
a[A'TU A’. Recall that for each 1=j <k, a;Ub; Uc; Ua;., =[2n], and that
these sets are mutually disjoint.

Let x] € A’. Consider the following four cases:

1) | € b;. Then, if i is even, by our construction (p,,,(x{f) = <p,,’_(x’.f,.) and we take
o(x})=x!_,. If i is odd, then <p,,‘(x’,?) = ¢y, (x1.1) and we take oy(x!) = x/,,. Thus,

if 1 € b,
xi if i is even
0',(x’,:)={

xe if i is odd.
2) I € ¢;. Then similarly

X if i is even
o(xi)=

Xl if i is odd.
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3) I€a. If 1<i<r, then ¢, (x!)= @4 (x!"") and we take oy(x})=x!"". If
r,+1<i<r + m, then by the definition of an (a;, b, ¢; d.a.s.) there exists some
i’y +m;+1<i'<k in a congruence class mod2 different from that of i
(namely i'=k +1+r,—i) so that ¢,(x!)= ¢, (x)) and we take oi(x])=x! =
Xiﬂw,—.-

A similar reasoning leads us to take o(x!) = x} = xh. o, forn+ my+1<i <
k (observe that r, +1<i”"<r, + m; in this case). Thus, if | € q; we have

! if1<i<r,

x!
(TI(X{) = {
Xhorenoi if i>r+1.

4) I€a.,. f 1 Si=r., then ¢, (x!) = ¢, (x)*") and we take o(x!) = x!"". If
i>r+1, then ¢,(x))=a/™" is an element in one of the pairs which has been
removed in the construction of the points of A (namely, of the points {x!"'}<.,).
Hence there exists an i', r, <i'=k, with i —i’=1(mod2) so that ¢, (x})=
®a.,(x}) and we take oy(x!)= x’ (Observe that by the construction, the
correspondence i — i’ just defined is idempotent, i.e. i =i’ implies i’ — i)

This concludes the definition of o, on A'. It follows from the definition of o,
that if both x] and o,(x/) are in A’, then oi(x!) = x/. Hence o, can be extended
to an idempotent permutation of D; = A’Ug[A’]. 1t is also clear that if
a(x!) = x? for some x! € D.. then

(=18 g0+ (= 1) 8yl = 0,

and the main lemma is proved. O
We still have to prove Lemmas 6.3 and 6.4.

Proor oF LEmma 6.3. For G,H C X andd C[2n]we use the notation HC,G
to state that H = G N ¢,'(S) when S is a |d| cube in ¢,[G]CR". (Recall that
an m cube is an open cube in R™ with sides parallel to the axes.)

Let & # G CX be an open set, let k >0 be an integer, and let (a, b, ¢) be an
interior triple w.r.t. F.

Set G = G. Since ¢,us is interior, there exists some n cube S in @.u[Gi]
(recall that |a U b| = n). We may assume that $ = A x B where A, B are |a/,
|b| cubes in ¢.[G], ¢,[G] resp.

Let Bi, Bi be [b| cubes in B with B;N By, = . Set

Si=A X By, Si= A X By

(see [13, fig. 3, p. 307] where a similar construction has been carried out with
n=2,and |a|=|b|=]|c|=1) and
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Gi.= G m(P;Ll_)b(Sl,()a Gi= Gy n‘Pan(s
Clearly SN Si=0=GiN G,
Gl’(Can Gk’ GZCanGk
and G, Gk are open subsets of X.
Since ¢ ... 18 interior, there exists an n cube St = A' X C'in ¢ .u{Gi], where
A’, C' are |al, |c] cubes in @.[Gi], ¢.[G1i] respectively. Clearly A'CA =
ea[ G-

Set

G;’(—l = Gl’cn (PaUC(Sk 1)

It follows that G = G« D wus Gk D auc Gier.
We return now to S,: Si=A X B{D A'x B}. Set Gi= G.N ©aus(A’X BY).
54 is open with @, [Gl]= A"
Now ¢,u. [G4] contains an n cube Sh = A"X C” where A"CA’. Set
G/I:‘l = G’»: aUc(S,I: 1)

Return  again to Si, S, =A'XC'DA"XC". Set Gj, =
¢au(A"XCHYN G @aub[Gk i) contains an n cube Si.,= A" X B" with
A"CA". Set

Gia=GioiN (PaUc(Sk 2)
Then Gi_i D .0 Gioa.
Continuing in this manner we construct open sets { G }/-, and {G}:-, so that
G = ijaub GI,(DHUC Gl’cﬂ:)aubGL—zj t 'DaUc GéDanG;,
G = GkDuUbGllé:)uUc LljaubGZ—zD T 'DaUCGgDuUbG,{
and
‘pa[GL]:(Pa[GK]D<pa[GL—l]D<pa[ Z—vl]D(Pa[Gl’(—Z]D(pa[ ‘12-213”'
D 0.6 D ¢a[GT]D u[Gi] = A,

i.e. the [a| cube A, is contained in all the |a| cubes ¢,[G!] and ¢,[G"],
l=si=k

We claim that G{< G (rela; b,c; k). Indeed, let {a}i_; be points in
©.[G1i] = A, such that a’s with even i differ from a;’s with odd i. Let {z:}}-, be
points in G| with ¢,(z;) = a;, 1 =i = k. Set x, = z,. Since G; D .., G1, and both
x, and z, are in G}, it follows that there is a point x; in G; with @.(x;) = ¢.(z;) =
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a: and @s(x2) = @,(x)). Let us explain this point: Gi= G:N @.Lx(S) where
S =A X B, A CR"!, BCR". Suppose the coordinates of ¢ ,us(x:) and ¢ .us(22)
(in R+ R™) are @a.u(x1)= (a1, 1) and @.us(22) = (a2, B2). Since the cube
S = A x B contains the points (a,, 8,) and (a-, 8:) it contains also the point
(az, B:), and we take as x; a point in G; for which @.us(X2) = (a2, B1).

Now we continue in a similar way: x, and z; are both in G:, and G: D ,.,.G3,
thus as above there exists a point x;€ G; with ¢.(x3) = ¢.(23) = as, and
¢.(x3) = @.(x.), and by an obvious induction we construct the points {x,}!-,. An
immediate check shows that ¢,(x;)= a;, 1 =i =k and that {x;}/_,isa (b, c a.s.).
Observe that x, # x,., (since the same is true for the a;’s) and that {x,},sx CG..
This proves (i) of Lemma 6.3. To prove Lemma 6.3(ii), construct in G, in the
same way, a (b, ¢, a.s.) {x;}/5c., with &, = @a(x2¢41-5), 1 =i = k. This is possible
since {a;}f<) C A, C @[ G']. It follows that the pair {x;}/., and {x.};*,..isa(a; b, ¢
d.a.s.). Observe that since GiN Gi= G, {x.}i-; N {x:}i*c.. = D too. Since k was
arbitrary this proves Lemma 6.3(ii). O

Proor oF LEMMA 6.4.  Set X = X,. Since by the definition of an interior chain
@ o, b, 18 interior, it follows that ¢, us,[ Xk ] contains an n cube S = A X B, where
‘A, B are |ai|, | b.| cubes respectively. (Recall that by an m cube we mean an
open m-dimensional cube in R™ whose sides are parallel to the axes of R™, and
that [a; Ub;|=|a;Uc|=n for 1 =j=k.) Let B, B, be | b | cubes in R"™' so
that BN B,=¢, B,CB, B,CB and set

Gk = Xk ﬂ ‘P;:Ubk(A X B])

Clearly Gy is open in X, hence by Lemma 6.3 there exists an open G so that
Gi< Gy (rel aw; b, e k). @aun [Gi] contains also some n cube A’ x B’ of the
same type, and clearly A'CA.

Set X1 =X, N ¢ un(A’'X B,), then X,_, is open and

Pa, [Xk—l} = A'C‘Pak [G"(]

and since B NB,= it follows that GNXi =
@ aun (A XB)N @l (A'X B,) =D too.

Now operate in a similar manner on X,_, with the interior triple
(@x-1, bi-y, ck-1), to construct in X,_, open sets X,_,, Gi1, and G-, so that

G < G- (relac-y; by, oy k),
G NXi, =

and
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‘P“k—l [Xk—Z] C (Pnk_, [GL41]~

Since G-, C X4, it follows that G, N G-, = .
By an obvious induction we continue, and construct open sets G; and G/ for
=j=k so that
() G;<G,(rela;; b,c;; k) for 1 =j =k,
(ii) ¢o[Gi-1]Co,[G]] for 1<j=k,
(i) the sets {G,}}-, are mutually disjoint.
And the lemma is proved. O
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