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UNIFORMLY SEPARATING FAMILIES 
OF FUNCTIONS 

BY 

Y. S T E R N F E L D '  

ABSTRACT 

A concept concerning separation of points by functions is defined and studied. 
This concept has close relations with superposit ions of functions and dimension 
theory, and these relations are investigated. A theorem concerning the dimen- 
sion of projections of Cantor  manifolds in R ~ is proved. 

I. Introduction 

This article is devoted to the investigation of a concept concerning separation 

of points by functions, which we call uniform separation. It turns out that this 

concept has close relations with superpositions of functions and dimension 

theory. Our main emphasis will be on the investigation of the connection 

between these concepts. 

Let X be a set, and let F be a family of functions on X. (We disregard the 

range of elements of F for the time being.) Recall that F is called a (point) 

separating family if for each x ~ z  in X, ~ ( x ) i ~ ( z )  for some ~ E F .  The 

property of uniform separation is stronger than that of separation. 

1.1. DEvmrrlON. (i) We call F a strongly separating family if for each integer 

m and each pair {xi}~"=l, {zj}~-~ of disjoint m tuples of points in X there is some 

q~ G F so that the sets {~(xj)}7'=,, {~(zj)}~-i do not coincide. 

(it) F is called a uniformly separating family (u.s.f.) if there exists a 0 < A ~ 1 

such that for each pair {xj}~_~, {zj}~ of disjoint finite sequences in X, there exists 

some ~0E F so that if from the two sequences {~(xj)}7'=~ and {~ (z~)}7'-1 in ~,[X] 

we remove a maximal number of pairs of points ~(xj,) and ~(zj2 ) with 

~p (xj,)= ~ (z,2) there remains at least Am points in each sequence. (Or, equival- 

ently, at most (1 -  A)m pairs can be removed; see also Definition 2.2.) 
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Clearly if F is a u.s.f, then F is strongly separating, and a strongly separating 

family separates points. (Just take m = 1 in the above definition.) The following 

examples show that the converses are false. 

EXAMPLES. (i) Let X={(x,y):O<=x,y<-l} be the unit square. Let F--- 

{~,  ~2} where ~ot(x, y) = x and ~2(x, y) = y. Clearly F separates points, but is not 

strongly separating: Let x~ = (0,0), x~ = (1, 1), z~ = (1,0) and z2 = (0, 1). Then 

{x~, x:} N {z~, z2} = Q but ~0, [{x,, x2}] = ~, [{zl, z2}] = {0, 1}, i = 1,2. Hence F is not 

a strongly separating family. (Throughout this paper we use the symbol ~ [U ]  for 

the image of the set U under the function ~, and ~ (x) for the image of the point x 
under q~.) 

(ii) Let X = N be the natural numbers, and let q~(n)= [n/2] and ~2(n)= 

[(n + 1)/2]. Then F = {q~, ~2} is strongly separating, but not u.s.f. To show that F 

is strongly separating, let A = {n,, n2 , "  ", n,,}, B = {k~, k 2 , "  -, k,,} be disjoint 

sequences in N. The assumption that q~,[A] = q~,[B], i = 1,2 would imply that 

for each nl E A, nt - 1 E B, and vice versa, which is clearly impossible. Hence F 

is strongly separating. But F is not a u.s.f., indeed let A,  = {1,3,. �9 2n - 1}, 

B, = {2 ,4 , . . . , 2n} .  Then A,  f ] B ,  = O, JA, I = lB, I = n (/AI denotes the cardi- 

nality of A)  and 

~ [ A , ]  = { 0 , 1 , 2 , - . . , n -  1}, 

~2[A,] -- {1 ,2 , . . . ,  n}, 

r = {1 ,2 , . . . ,  n} 

r = {1 ,2 , . . . ,  n}. 

Hence t~[A,]fq~,[B,]t>=n-2, i= 1,2 and F is not a u.s.f. 

(iii) Let X be the boundary of the triangle in 12 with vertices (0, 0), (�89 0) and 

(1, 1), and let ~,, ~2 and F be defined as in (i) above. It is not hard to check that F 

is strongly separating but not a u.s,f. 

In Section 2 we show that for a finite family F = {~}~=, of functions on X, 

being a u.s.f, is equivalent to the representability of each real bounded function f 

on X as f (x)= Y~=l g,(~(x)) where the g,'s are real bounded functions on the 

range Y~ of r 1 < i _-< k, and that in the case where X is a compact metric space, 

and the elements of F are continuous functions on X, the representability of 

each continuous real function f on X in the above form with g~ continuous on I,,, 

implies that F is a u.s.f. 

Kolmogorov [7] aad Ostrand [11] proved theorems from which, in particular, 

it follows that for each compact n-dimensional metric space X, there exist 

continuous real functions {~p~}~_-"]'l such that each continuous real function f on X 

= E~=, g,(r where the g,'s are real continuous can be represented as f(x) 2.+1 
functions on the real line. 
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Hence, it follows that each n-dimensional compact metric space admits a u.s.f. 

consisting of 2n + 1 real valued continuous functions. 

We conjecture that this number 2n + 1 is the best possible, i.e., that the 

following holds: 

1.2. CONJECrURE. Let X be a compact n-dimensional metric space (n _-> 2) 

then no family consisting of 2n real continuous functions on X is a u.s.f. 

The main part of the paper is devoted to results related to this conjecture. In 

particular we prove the conjecture for n = 2, 3, 4. 

In Section 3 we state a lemma which gives sufficient conditions for a finite 

family of 2n continuous real functions on a compact metric space in order not to 

be a u.s.f. This lemma will be our main tool in proving Conjecture 1.2 for 

n = 2, 3,4, and we hope that it will be useful in proving it for all n => 2. The 

lemma will be proved in Section 6. 

In Section 4 we state and prove a theorem concerning the dimension of 

projections of Cantor manifolds in R m. This theorem has no direct connection 

with u.s.f., but will be used in proving Conjecture 1.2. In that section we also 

recall some theorems on closed mappings which lower dimension that will be 

needed later. 

In Section 5, finally, we prove Conjecture 1.2 for n = 2, 3,4. 

Some remarks concerning Conjecture 1.2 are in place here; first the restriction 

n => 2 in Conjecture 1.2 cannot be omitted: if X is an interval, the function 

~ ( x ) =  x clearly separates points uniformly. (For a family consisting of one 

function the concepts of separation and uniform separation coincide.) It is also 

clear that a single continuous real function separates the points of a space X if 

and only if X is topologically contained in the real line. 

In [12, w 3] it has been proved that a family consisting of two real continuous 

functions on the circle is not a u.s.f, there. It follows that if X is a one- 

dimensional space which contains a circle then Conjecture 1.2 holds for X. 

Hence, the only one-dimensional spaces on which we do not have full informa- 

tion about the minimal number of real continuous functions which separates 

their points uniformly are these spaces which do not contain a circle. Such spaces 

which are also connected and locally connected are called trees (or dendrites). 

Superpositions of functions on trees were studied intensively in Arnold's  paper 

[1], and played a central role in solving Hilbert 's problem 13, and in the 

development of the theory of superpositions of functions. 

Conjecture 1.2, if true, combined with Ostrand's result [11], and our observa- 

tions in Section 2, would imply the following characterization of dimension for 
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compact metric spaces: d i m X  =< n if and only if there exists a u.s.f, for X 

consisting of 2n + 1 real continuous functions (n > 0). In view of Section 5, this 

characterization holds for n =< 4 at least. Let us recall that from the classical 

theorem of Menger  and N6beling (see, e.g., [4]) it follows that if dim X _-< n, then 

there exist 2n + 1 real continuous functions on X which separate its points. The 

number 2n + 1 here is minimal in the sense that for each n there exists a space 

X, of dimension n such that X, cannot be separated by 2n real continuous 

functions (see Flores [3]). But the number 2n + 1 is obviously not minimal for 

each n-dimensional space. I" for example can be separated by n real continuous 

functions. Moreover,  for each n-< k =<2n + 1 there exists a space Xk, of 

dimension n so that the minimal number of real continuous functions which 

separate its points is k. It follows that the minimal number n _<- k =< 2n + 1 of real 

continuous functions which separate the points of an n-dimensional space X 

depends on the global combinatorial structure of X. 

The situation with uniform separation is different (for n _-> 2). Here the 

dimension of X (which is a local property) is the only factor which influences the 

minimal number (as we prove for n = 2, 3, 4, and conjecture for all n -> 2). 

2. Uniformly separating families of functions and their connection with 
superpositions of functions and dimension theory 

We begin this section with another definition of a u.s.f., more formal than the 

one given in the introduction. For this definition we need the concept of a set 

with multiplicity. 

2.1. DEFINITION. A set with multiplicity is a pair (A, a)  where A is a set, and 

a is a function on A whose values are nonnegative integers. (Intuitively a(x) is 

the number of times x E A appears in (A, a).) 

The cardinality I (A,a) l  of the set with multiplicity ( A , a )  is defined by 

I (A, a)[ = X~ ~A a (x), and the intersection of two sets with multiplicity (A, a)  and 

(B,b) is the set with multiplicity ( A D B ,  a^b ) ,  where ( a^b ) ( x )=  
min{a(x) ,  b(x)}. If (A, a)  is a set with multiplicity, and ~o is a function on A, 

then ~ [(A, a)] is the set with multiplicity ( , [ A  ], ~a),  where ~;a (y) is defined by 

a(x) for y E q~[A]. 
q~a(y) = x~a 'ly) 

Having this definition in mind we can define u.s.f, as follows: 

2.2. DEFINrnON. Let X be a set, and let F be a family of functions on X. We 

call F a u.s.f, if there exists a constant 0 < A _-< 1 such that for each pair of sets 
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with multiplicity (A, a)  and (B, b) in X with A N B = O and ] (A, a)] = I(B, b)l = 

m < ~ there exists a q~ E F so that [q~[(A, a)] n q~[(B, b)][ =< (1 - A)m. 

It is easy to check that Definitions 1.1 and 2.2 agree. 

Let X be a set. We denote by l,(X) the Banach space of real functions tz on X 

such that [I/~ 1] = Ex~• I tz (x)l < o0 (i.e. {x :tz (x) / 0} is a countable se t  {Xn}~= I and 

y~=~ltz(x.) I < oo; for convenience we shall use the symbol p~ = Y~_~a.6x. for 

tz E l,(X) where a, = ~(x,)) .  B(X) will denote the Banach space of bounded 

real functions on X with the norm [If][ = supx~• It is well known that 

( t , ( x ) ) *  = B(X). 
If X is a compact metric space, then C(X) will denote the closed subspace of 

B(X) consisting of the continuous functions. We identify C(X)* with the space 

of regular Borel measures on X with the total variation as the norm. Observe 

that I,(X) is the closed subspace of C(X)* spanned by the singletons 6,, x E X. 

All the notations and theorems concerning Banach spaces, linear operators, 

and their adjoints which we use in the article can be found in [2]. 

Let F = {q~,}[=, be a finite family of functions on X such that ~ maps X onto 

the set Y, l=<i_-<k, and let Y =  U~=,Y, be the (disjoint) union of the Y,'s. 

Consider the following operators: 

(2.3) T, : I ,(X)--,  I,(Y,) 1 =< i _-< k 

defined by 

r , . ( y ) =  5". 
x ~ , p . l ( y )  

or, equivalently, if kt = E~=~ a,6x. then 

and 

(2.4) 

defined by 

i.e. 

T : t,(X)--, t , ( r )  

k 

T=ET, 
i = 1  
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REMARK. We regard I,(Y~), 1 -< i _-< k as the subspace of I ,(Y) consisting of 

the functions which vanish outside Y~. The same convention applies to B(Y~), 

C(Y,)  and C(Y~)*. 

We define further operators U , : B ( Y ~ ) ~  B ( X )  and U : B ( Y ) ~  B ( X )  by 

(2.5) 

and 

U~g(x) = g(~,,(x)); g E B(Y~), x E X 

k 

(2.6) Ug(x) = ~ g(~,,(x)); g E B(Y ) ,  x ~ X. 
i = l  

2.7. PROPOSITION. The operators U, T, 1 <= i <= k, U and T are linear and 

bounded. Moreover T* = U~ for 1 <- i <- k and T* = U. 

PROOF. Trivial. Observe, e.g., that for x E X and g E B(Y~) 

(T*(g)(x)  = ( T ' g ) ( 8 . ) =  (T~6x)g = (6~,(x,)g = g(~0,(x)). 

Hence by (2.5) T'~ = U~. [] 

The following theorem links the concepts of u.s.f, with superpositions of 

functions: 

2.8 THEOREM. In our previous notation, the following three statements are 

equivalent: 

(i) F is a u.s.f. 

(ii) Each f E B ( X )  is representable in the form 

f ( x ) =  ~ g,0p,(x)) with g, E B(Y~). 
i = l  

(iii) The operator T (defined in (2.4)) is an isomorphism into. 

PROOF. Clearly (ii) means that the operator U maps B ( Y )  onto B(X) .  It is 

well known that a bounded linear operator T on a Banach space is an 

isomorphism into if and only if its adjoint T* maps onto. Since by Proposition 

2.7 T * =  U, we get that (ii)r162 (iii). 

Assume that (iii) holds. It follows that there exists a /3 > 0  such that 

II II--> t3 II ~ II for all /z E I,(X); hence II T~tz II---> (/3/k)l[ # II for some 1 _-< i =< k. 

Notice that I[ T~ I1_- < II and therefore /3 =< k. 
To show that F is a u.s.f, let (A, a)  and (B, b) be disjoint sets with multiplicity 

in X, with 

I(A, a)l = I(B,b)l  = m. 
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Consider  the e lement  /.t E l,(X) defined by 

(2.9) ~ = ~ a ( x ) & -  ~ b(x)&.  
x ~ A  x ~ B  

Clearly [I/~ II = 2m. F rom Defini t ion 2.1 and (2.3) it follows that 

II T4* II = 2m - 21 q~, [(A, a)]  fq q~, [(B, b)] I. 

As we observed  for some l<=i<-k, i.e. for  this i, 

I~0, [(A, a)]  M ~, [(B, b)] I =< (1 - [3/k)m. Hence  F is u.s.f, with the constant  A = 

[3/k. This proves (iii) ~ (i). 

We  still have to show that (i) f f  (ii). Assume F is u.s.f, with the constant  

A > 0. It follows (as in the proof  o f ( i i i ) f f  ( i)) that  for  all t* E l~(X)of  the form 

(2.9) IITt, ll_->al[~ll. We wish to show that U =  T* maps on to  B(X).  T he  

constant  functions are clearly in the range of U, hence we may consider  B ( X )  
modulo  the constants.  The  preduai  of this last space is 

l,(X)o = {/z E / , ( X )  : ~'~ # ( x )  = 0}. 
x E X  

Hence  it suffices to show that II II a II II for  all /~ E l,(X)o. The  e lements  

with finite support ,  and rational values are norm dense in l~(X)o, thus we may 

consider  such ones. Let  t* = E,L, r,8., be such an e lement ,  with tl/* II = r .L,  I r, I = 

1. We may assume that r~ = n~/2m where  m > 0, nt, 1 =< l =< L, are integers, and 

2m is the com mon  denomina to r  of the rt's. Let  us also assume that n~, �9 �9 n, are 

positive, and that ns+,, '" ", nL are negative.  Since Y,~-=, rt = 0 we clearly have 

X~=, n, = X~=,+~ln, I = m. Consider  the sets with multiplicity (A, a )  and (B, b) 

defined in the following manner :  

A = {x,}~, 

X L B = { ,},=~+,, 

a(x , )  = n, (for x, E A )  

b(x,) = - n, (for xl E B).  

Then  /z = (1/2m)[Exeaa(x)&-5:x~Bb(x)8,],  i.e., 2m/,  is of the form (2.9). 

Hence ,  as we observed,  [[ T/x II--> A II II, and the t heo rem follows. [ ]  

Assume now that X is a compact  metric space, and that F consists of 

cont inuous  functions {q~,},~=l. Hence  the Yi's, 1 < i =  < k and Y are compact  

metr ic  spaces too. Let  V~ : C(Y~)--+ C(X),  1 <= i <= k and V :  C(Y)---+ C(X)  be 

the restrictions of U,, 1 =< i =< k and U to C(Yi) and C ( Y )  respectively,  i.e. 

(2.10) (V,g)(x) = g(q~,(x)); g E C(Y,) ,  x ~ X 

and 
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k 

(2.11) (Vg)(x) = ~ g(r g E C(Y),  x E X. 
i=l  

As in the discrete case, we can derive information from the nature of the 

adjoints V* and V* of V~ and V: 

2.12. PROPOSITION. Let tz E C(X)*, Gi C Y~ and G C Y be Borel sets. Then 

(2.13) (V*/.t)(G,) = ~U, (q) 71 ( G i ) )  

and 
k 

(2.14) (V*t~ )(G) = ~, i~(~o;'(G)). 
i=1 

PROOF. R o u t i n e .  

We may consider the elements of l~(X) (resp. l~(Y~)) as Borel measures on X 

(resp. on Y~), i.e. l~(X)C C(X)*. Observe also that by (2.3), (2.4) and Proposi- 

tion 2.12 we have 

(2.15) V*/t~(X) = T, and V*/l , (X)= T. 

The next proposition, which links the concepts of u.s.f., superpositions with 

bounded functions and superpositions with continuous functions, follows at 

o n c e .  

2.16. PROPOSITION. Let X be a compact metric space, let F = {~,}~=~ be a finite 
family of continuous functions on X mapping it onto the spaces {Y~}~=~, and let 
Y = U~=l Y/ (disjoint union). 

If  each f E C(X)  admits a representation 

k 

f (x)  = ~ g,(~i(x)) with 

then each f ~ B ( X )  admits a representation 
k 

f ( x )=  ~ g,(~o,(x)) with 
i= l  

g, E C(Y~) 

g, E B(Y,)  

i.e. F is a u.s.f. 

PROOF. The assumption means that V maps C(Y)  onto C(X);  hence V* is 

an isomorphism. Since T =  V*/I1(X), T is an isomorphism too, and the 

proposition follows from Theorem 2.8. [] 

We could not prove the converse of Proposition 2.16, i.e., that if F is a u.s.f. 

then V maps C(Y)  onto C(X)  except in the cases k = IFt = 1 (which is trivial) 

and k = 2. 
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Let  us s tate  this quest ion as a p rob lem:  

2.17. PROBLEM. IS it t rue  that  if F is a u.s.f, then V maps  C ( Y )  on to  C ( X ) ?  

In order  to show that  in the case k = 2 the answer  to P r o b l e m  2.17 is 

affirmative,  we exhibit  a sufficient condi t ion for  a finite family F = {~}~.~ to be  a 

u.s.f, on a set X, which in the case k = 2 turns out  to be  necessary.  

Let  X be a set, and let F = {q~}7=1 be  a family of funct ions on X. For  a subset  Z 

of X and l = < i N k  define 

(2.18) Z ~  {X E Z :  I Z n ~ ~-1 (~i ( X ) ) l e  2}. 

Let  r : 2 x --* 2 x be  the  funct ion def ined by 

k 
(2.19) r ( z ) =  O z "~ 

i=l 

(where 2 • deno tes  the set of all subsets  of X) .  

2.20. THEOREM. If r " ( X )  = 0 for some integer n then F is a u.s.f. 

More generally : Let X be a field of subsets of X so that Z ~ E "Z for Z E X and 

1 <<- i < k. If r" (X )  = f~ for some n, then there exists a 0 < A <<- 1 so that for all real 

measures tx on (X,~,) [[W,/zII>A[I/.Lll for some l < i _ - k ,  where Wd~ is the 

measure on Y, = ~o,[X] defined by W~tx(G)= /x(9,1(G)). 

REMARK. If X is compac t  metr ic  and the ~o~'s are cont inuous  on X, then the 

Borel  field has this p rope r ty  since 

Z ~~ {x ~ Z : I Z  O ~r > 2 }  = {x ~ Z ;  d i ame te r  ( Z  n ~;l(q~,(x)))  > 0} 

= QJ {x ~ Z : d i ame te r  ( Z  N q~ 71 (9, (x))) _-> ~} 
rt=l 

i.e. Z ~ is an F~ in Z. 

It follows f rom (2.10) and ( 2 . 1 3 ) t h a t  in this case II V * ~  [I > A II/xll for  all 

Ix E C(X)*.  If we take  ~ to be  2 x we see that  F is a u.s.f. 

PROOF. W e  use induct ion on n. If ~-~ = O the assert ion vacuously  holds: 

A ssume  that  for Z E X T"-~(Z) = Q implies that  the assert ion holds for  Z,  and 

that  r " ( X )  = Q.  O b s e r v e  first that  for  each 1 -< i < k, ~ [ X  ~'~] N ~ [ X \ X  ~'~] = ~J, 

since for  y, E q~ [X~"], I,~Z~(y~)l ==_ 2, while for  y2E ~ , [ X \ X  r [ q~;l(y2)l = 1. 

Set Z = r (X) .  We have:  ~ =  r ' ( X ) =  r ' - l ( r ( X ) )  = r ' - I ( Z ) .  H e n c e  by the 

induction hypothes is  our  assert ion holds for  Z with some  cons tant  0 < A --- 1. Let  

a be  any real n u m b e r  1/(1 + A) < a < 1, e.g. a = (2 + ~)/(2 + 21) .  Let  ~ be  any 
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real measure on E with II = 1 and denote by [# I the variation of/z. Consider 

the following two cases: 

(i) I~' I (Z )  -~ '~. Thus I I ~ / Z  II >-- '~, and since our assertion holds for Z, it follows 

that IIw,(g/z)ll>-_-Aa. The total variation of I z / X \ Z  does not exceed 1 -  a, 

hence the mass of/~ which lays outside Z can reduce II II by at most (1 - a) .  

It follows that [[ VV~/z II > Aa - (1 - a) .  

(ii) J / ~ l ( Z ) < a .  Then I t z l ( X I Z ) > - _ l - a .  Now X \ Z = X I f " ) ~ , = , X  (')= 

U~=, (X\Xt')).  Hence I/z I(X\XC'))_- > (1 - a ) / k  for some 1 _-< i =< k. Since ~ is 

one to one on X \ X  (') and ~0,[X (~ n ~0, [X\  X (')] = ~ ,  it follows th'at 11 W,/z IJ > 

(1 - a) / k .  Hence if we take h'  = A/2k (1 + )t ) then A' _-< 

min{(1-  a) / k ,  Aa - ( 1 -  a)} and our assertion holds with A'. [] 

2.21. LEMMA. I f  IF[ = 2 then F is a u.s.[, i f  and only if r"  ( X )  = @ for some n. 

PROOF. Assume ~'"(X) ~ O for all n --_> 0. Let x, E z" (X) = 

(r~ ~ n (z"-~(X)) t2). Since x, E (~-"-'(X)) t" it follows from (2.18) that there 

exists some x2 ~ r" - ' (X)  with qh(x~) = ~p,(x2). By the same argument there exists 

an x3 E ~-"-~(X) with ~,2(x2)= ~2(x3). In this way we construct points {xi},=~ in X 

(x, E ~-"-J§ ~0,(xj) = ~,(xj+~)for j odd, and ~p2(xj) = ~2(xj+,)for j even. 

Set /z = E;'=, (-1)J6 V Then [[;z [I = n and clearly [I T4~ I[ --<2, i =  1,2. Hence 

JJ T~/~ [I =< (2/n)[[# [[, and since n was arbitrary F is not a u.s.f. 

The other direction has been proved in Theorem 2.20. [] 

Let now X be a compact metric space and let F = {qh, ~2} be a u.s.f, on X with 

continuous elements. By Lemma 2.21 ~'"(X) -- O for some n, hence, by Theorem 

2.20 (and the remark following it) the operator V* is an isomorphism into, which 

shows that the answer to (2.19) is affirmative in this case. 

Let F = {~,~}~_~ be a family of continuous real valued functions on a compact 

metric space X. The Stone-Wierstrass theorem states that F separates points if 

and only if the closed algebra generated by F is C ( X ) .  

An affirmative answer to Problem 2.17, combined with Proposition 2.16 would 

imply the following Stone-Wierstrass type theorem: F is a u.s.f, if and only if 

C ( X )  is the sum of the closed algebras each of which is generated by a single 

element of F. 

In [11] Ostrand proved the following: 

2.22. THEOREM. Let  X = X~ x X2 • �9 �9 �9 x Xm where X~ are compact  metric 

spaces with dimX~ = n~, 1 <= i <-_ m and  n = ~ , ~  n~. Then there exist funct ions 
i i ~ t , ' "  ",~02.+1 in C(X~) such that each f E C ( X )  is representable as 
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2n+l  

f ( x , , - - - ,  xm) -- . - -  + , p T ( x ' ) ]  
i=l 

with gj E C(R) .  

Combining a characterization of dimension presented in [11] with a technique 

from [12], one can prove that such families {~},  1 -< ] =< 2n + 1, 1 _-< i =< m are 

residual in [I17=1C(X,)] 2"§ (i.e. are complemented there by a set of first 

category). 

By Proposition 2.16, Ostrands theorem implies the following (just set i = 1 

and d i m X  = n = nl): 

2.23. THEOREM. Let X be an n-dimensional compact metric space. Then there 

exists a u.s.f. F C C ( X )  with I FI < 2n + 1. Moreover, such families are residual in 
C ( X )  2n+l  " 

As stated in the introduction it seems that the number 2n + 1 in Theorem 2.23 

is the best possible (see Conjecture 1.2). In the next sections we prove this for 

n = 2 , 3 , 4 .  

2.24. THEOREM. Let X be a compact n-dimensional metric space 

(n = 2, 3, 4). Then no family F C C ( X )  with I F I <-- 2n is a u.s.f. 

3. The main lemma 

In this section we state a lemma which gives sufficient conditions on a family F 

consisting of 2n real continuous functions on a compact metric space to be 

non-u.s.f. We shall apply the lemma in the proof of Theorem 2.24 in Section 5. 

Since the proof of the lemma is technical and involved, we devote a special 

section to it (Section 6) at the end of the paper. 

In order to state the main lemma we need some definitions and notation. 

3.1. DEFINITION. Let X and Y be metric spaces, and let ~ :X---~ Y be a 

continuous function. r will be called interior if for each open U C X, ~ [ U] has 

non-empty interior in I/. (Observe that an interior function ~ need not be an 

open function, i.e. we do not demand that ~ [U]  will be open for open U; 

~( t )  = t 2 on [ -  1, 1] is interior but not open.) 

3.2. DEFINITION. For an integer k, let [k] denote the set {1 ,2 , . . . ,  k}. a, b, c, 

will denote subsets of [k], and la [ the cardinality of a. 

3.3. DEFINITION. Let X be a compact metric space, let F = {~,}~=1C C ( X )  

and let a C[k].  We denote  by 9a the function 
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defined by 

~ : X'--> RI"I= I- ~ R~ 
l e a  

where a = {i,-. . , i lo!}. 

REMARK. Observe that in Definition 3.1 of an interior function it is important 

to specify the range space Y into which ~ maps X. In the sequal we shall use this 

concept for the functions ~a defined in Definition 3.3 and it is worth noting that 

these mappings were defined as mappings from X to R ral. Hence when we say 

that 9o is interior, we mean interior as a mapping from X to R I~l (and not, e.g., 

as a mapping from X to 9o[X]). 

3.4. DEFINITION. Let X be a compact metric space, let F -- {~p~}~, be a family 

of 2n elements of C(X), and let a ,b ,c  C[k]. 

(i) The triple (a, b, c) will be called an interior triple w.r.t. F if the following 

conditions hold: 

1. The sets a, b, c are mutually disjoint. 

2. l a j + j b j = l a j + j c t = n .  

3. The functions ~'.ub and ~ouc are interior. 

(ii) A sequence {(a,, b,, c~)ff=, of interior triples w.r.t. F is called an interior 

chain w.r.t. F if for each l<-_i<-k - 1 ,  [2n]\(a, Ub~ t0 c,) = a~+,. 

3.5. MAIN LEMMA. Let X be a compact metric space, and let F =  

{~;, },~:, C C ( X ). f f  for each integer k > 0 there exists an interior chain {(a,, b,, c, )},~=, 

of length k w.r.t F, then F is not a u.s.f 

3.6. REMARK. In the proof of 3.5 to be presented in Section 6, we will obtain 

more precise information: we will see there that if there exists an interior chain 

{(a, s c,)ff=, w.r.t. F, then there exist k = points {x{},~,.j~k in X such that the 

element/~ E I,(X) defined by/z = E,.,( - 1)~**&i has the property [[ T~ [[ < 8k for 

1 < l<-_2n (where Tt is the operator defined in (2.3)). Since lip. I[= k 2 and 

[I T~z I[ -- X~_"-i 1[ Tt/z [[ it follows that [I T/~ [1 < 2 n .  8k -- (16n/k)[[tz [[. If this holds for 

arbitrary k, then.T is not an isomorphism, and by Theorem 2.8 F is not a u.s.f. 

4. On the dimension of projections of Cantor manifolds in R m 

The main aim of this section is to state and prove a theorem concerning the 

title of the section. This theorem generalizes a theorem of S. Marde~i~ [9} (see 
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also [109, and in the p roof  we use the technique  establ ished there .  W e  also recall  

some  known theo rems  on mappings  which lower  dimension.  

Let  m > 0 be  an integer .  W e  set R " = R1 • R2 • �9 �9 �9 • R,, where  R~ is the  real  

line. W e  use again [m]  for  { 1 , 2 , . . . , m } .  

4.1. DEFINITION. Let  a be  a subset  of [m].  T h e  pro jec t ion  Pa f rom R "  to 

Rlal is the mapp ing  

P,,(xl,  x 2 , "  ", xm) = ( x . ,  x ,2 , ' -  ", x,jaj) is ~ a. 

If a subset  W of R "  is unders tood ,  we may  use Pa ins tead of Pa/W. 

4.2. LEMMA. Let X be a compact subset of R n, and let 1 <= k <= n be an integer. 

Let Y be the subset of R k defined by 

(4.3) Y = { y E R k : d i m [ ( y • 2 1 5 2 1 5 2 1 5  

If Y is of second category in R k then dim X _>- n. 

4.4. REMARK. It is not hard  to show that  Y is an F~ in Rk (see [5] or  [6]). 

Thus  the three  p roper t i es  

(i) Y is of second ca tegory  in Rk, 

(ii) Y has n o n - e m p t y  inter ior  in Rk, 

(iii) d im Y = k 

are equivalent .  

H e n c e  one  could s tate  the l e m m a  as: 

(4.5) d im Y = k if and only if d im X = n. 

(Clearly dim X = n implies  d im Y = k.) 

PROOF. Let  {Bt}7=l be  a sequence  of ( n - k ) - d i m e n s i o n a l  cubes  in 

Rk+~ • �9 �9 �9 x R,,  which forms  a basis for  the  topo logy  of this space.  For  each l _-> 1 

set 

(4.6) St = {y E R k : y  • B~ C X }  

and 

(4.7) S = Q) St. 
l ~ l  

W e  claim that  Y C S. 

Indeed ,  let y E Y ;  then d i m [ ( y x R k + l X . . . x R , ) N X ] = n - k  hence  

(y • Rk+~• " "  • R , )  A X has n o n - e m p t y  inter ior  in y • Rk+l•  "" �9 • R,, i.e. 
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(y x R~., x . . -  x R, )  A X D y x B; for some l_-> 1. Then y x B, CX, and by (4.6) 

y ~ S ,  CS. 

Now, since Y is of second category, so is S. Hence there exists some l _-> 1 so 

that ~ contains some k cube D. Since y x Bt C X for each y ~ St, we also have 

St • Bt C X, and by the compactness of X, St • Bt C X too. Hence D x Bt C X, 

and d i m [ D  x B;] = k + ( n  - k ) =  n. This proves the lemma. [] 

In his paper  [9] S. Mardegi~ proved the following theorem (see also [10]): 

4.8. THEOREM. Let W be an n-d imens ional  compact  subset o f  R m (n <= m ). 

Then there exists a subset a o f  [m] with lal  = n so that dimPo[W]  = n. 

Our next theorem is in the same direction. Let us recall that for a topological 

space W, d c W  >= n means that no closed subset of dimension _-< n - 2 discon- 

nects W. (See [8] for more information on dc.) 

A compact  space W is called an n-dimensional Cantor  manifold if dim W = 

d c W = n .  

Each n-dimensional compact  metric space contains an n-dimensional Cantor 

manifold (see [4, p. 93]). 

4.9. THEOREM. Let W C R m be compact, with d c W  >= n; n <- m. (In particu- 

lar, W may  be an n-d imens ional  Cantor manifold.)  I f  dim P, [ W] = 1 for some 

1 <-_ i <= m then there exists a subset a o f  [m] with la l  = n - 1, and i f f  a so that 

dim P~,}u~[W] = n. 

PROOF. Since W is connected and d i m P , [ W ]  = 1 we get that P , [W]  is a 

closed interval [a,/3], in R,. 

Let a < t < /3 ;  since t disconnects P~[W], P ; ' ( t )  disconnects W, and since 

dc W >= n it follows that dim PT'( t)  __.> n - 1. By Theorem 4.8 there exists a subset 

a of [m]\{i} with la  I = n - 1  so that d i m P o [ P ; ' ( t ) } =  n - 1 .  

For a C[m]\{ i}  with Ja l  = n - 1 set 

(4.10) r ( a )  = { t  : a < t < ~ , d i m P o [ P T ( t ) ]  = n - 1}. 

It follows that Uo T ( a )  D {t : a < t </3}, where the union is taken over  all 

subsets a of [m]\{i} with la l  = n - 1 .  

Hence there exists some a such that T ( a )  is of second category in (a,/3). Set 

X = PI,~uo[W]. By applying Lemma 4.2 with k = 1 and Y = T ( a )  we get that 

dim P~,~u, [ W] = n. []  

Let us remark that the conditions of Theorem 4.9 cannot be weakened by 

assuming only that dim W -> n, or even dimw W_~ n for all w E W instead of 

d c W  >- _ n. 
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The following example, of a compact subset W of R 3 with dimw W = 2 for all 

w E W, and dim P,[W] = dim P~2[W] = dim P,3[W] = 1, illustrates this fact. 

4.11. EXAMPLE. Set 

(4.12) I = { ( x , y , z ) : O < = x < = l ; y = z = O } C R  3 

and for each dyadic number k .2-"  with k odd set 

(4.13) W ~ 2 , = { ( x , y , z ) : x = k . 2 - " ; O < - y < = 2 - " ; O < = z < = 2  -"} 

and 

(4.14) W = (..J Wk.2- I,.3 I. 

One can easily verify in Fig. 1 that W has the desired properties. 

Fig. 1 

There is a natural extension of Theorem 4.9, which we could neither prove nor 

disprove. Let us state it as a problem. 

4.15. PROBLEM. Let W C R  m be compact, with dc W >= n, n =< m. If for some 

k ~ n d i m P M [ W ] =  k, does it follow that there exists an a C [ m ] \ [ k ]  with 

]a[ = n - k  so that dimPikjuo[W ] = n? 

Observe that Theorem 4.9 is the case k = 1. If Problem 4.15 has an affirmative 

answer then our proof of Theorem 2.24, which will be given in the next section, 

works for every n _-> 2 (and not only n = 2, 3, 4). 

We conclude this section by recalling some definitions and theorems concern- 

ing mappings which lower dimension of compact metric spaces. The theorems 

are valid for closed continuous mapping of general metric spaces, but we 

formulate them only for continuous mappings of compact spaces. 
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DEFINITION. Let X be compact metric, and f a continuous function on X. 

d i m f  is defined by 

(4.16) dim f =  y~t~jsu d imf- ' (y ) .  

The following is a well known theorem of Hurewicz ([4, p. 91]). 

4.17. THEOREM. Let X be a compact metric space, and let f be a continuous 

function on X. Then 

(4.18) dim X < dim f[X] + dimf. 

This theorem can be extended in two directions: first the trivial one. 

4.19. THEOREM. dcX  <= dcf[X] + dimf. 

(See [8] where it is stated without proof.) 

PROOF. If C disconnects f[X], then f - l (C)  disconnects X. Since C = 

f[f-'(C)] we get by (4.18) 

dim C = d i m f [ f  l(C)] _-> dim f - ' ( C ) -  direr, (4.20) 

i.e. 

(4.21) dim f - ' (C)  < dim C + dimf. 

Hence if some set of dimension n disconnects f[X],  then some set of 

dimension _-< n + d im/d i sconnec t s  X, and the theorem follows. [] 

Define 

(4.22) Df = {y E f[X] : dim f-'(y) _-> dim X - dim f[X]}. 

Theorem 4.18 just states that D f ~  ~.  The following is a better estimate on 

dim Df: 

4.23. THEOREM (Jung-Keesling). dim X ~ dim D f +  dim f. (See [5] and [6] 

for a proof.) 

5. Proof of the non-existence of u.s.f, of cardinality 2n for n-dimensional  

spaces n = 2, 3, 4 

The non-existence of u.s.f, of cardinality 4 for two-dimensional spaces has 

been established in [13], in a different setting, but with the same underlying 

ideas. Since by using the results of Sections 3 and 4 the proof becomes short, and 
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for  the sake of comple teness ,  we repea t  the proof  here.  We need first some  

l emmas  and nota t ions .  

5.1. DEFINITION. Let  X be an n -d imens iona l  Can to r  manifo ld  and let 

F C C ( X )  be a u.s.f. We  call F a minimal u.s.[, if no subfamily  of F is a u.s.f, on 

some  n -d imens iona l  Can to r  manifo ld  con ta ined  in X. 

5.2. LEMMA. Let X be an n-dimensional compact metric space, and let 

F C C ( X )  be a finite u.s.f. Then there exists an n-dimensional Cantor manifold 

X '  C X and a subfamily F' C F such that F' is a minimal u.s.f, on X' .  

We omit  the s imple proof .  

5.3. LEMMA. Let F = {~0,}~=, be a u.s.f, on a set X. Let a, b be subsets of [k] 

with a fq b = Q and a t3 b = [k].  I f  ~~ is constant on a set L C X, and Z C 

~ 0~(~b [L] ) \L ,  then {~0,}~, is a u.s.f, on Z. 

REMARK. H e r e  ~a : X ~ I-L~~ Y, where  Y, = ~0,[X] is def ined as in Defini t ion 

3.3. No topo logy  is a ssumed  in this l emma.  

PROOF. Let  f be any e l emen t  of  B ( Z ) .  Let f E  B ( X )  be such that  f / Z  = f  

and f / L  = 0 .  Since F is a u.s.f, on X, f is r ep resen tab le  as f ( x ) =  

E,~,g,(~o,(X))+~.,~bg,(~,(X)), g, ~ B(Y,) ,  1 _-<i _--- k. 

~oa is cons tan t  on L, i.e. ~ [ L ]  = (y~, y , ,  - - . ,  y,,o) and we may  assume without  

loss of genera l i ty  that  g~(y~) = 0 for  i~ E a. Hence ,  for  x E L we have:  

0 = f ( x ) =  ~ g~(~ , (x) )+  ~ g , ( ~ , ( x ) ) =  ~ g,(r 
l e a  i E b  i 6 b  

Since Z C r 1 6 2  to each z E Z there  co r respond  some  x E L  with 

~0b(z) = ~ob(x). H e n c e  E , ~ b g , ( r  0 for  all z E Z. Thus,  for  z ~ Z we get  

i~Ea i~Eb i~Ea 

and by T h e o r e m  2.8, {~i}iEa is a u.s.f, on Z. [ ]  

5.4. LEMMA. Let X be an n-dimensional Cantor manifold (n >= 2) and let 

{q~,}~=~ C C ( X )  be a minimal u.s.f. Then for each a C[k] ,  l a l  = k - 1, d im ~0o = 0 

(see (4.16)). 

PROOF. W e  may  assume that  a = [ k -  1]. If  d imr  > 0  then there  exists 

some  point  a = (a i ,  �9 �9 ", ak l) in R k-, with dim ~ l ( a )  _-> 1. Set L = ~2~(a) .  Since 

{~',},-~k is a u.s.f, and {~,},~k , are cons tant  on L, it follows that  ~ok is one  to one  on 
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L. Hence  ~k/L is a h o m e o m o r p h i s m ,  and L and Ck [L ] are one  dimensional.  Thus  

~r has a non-empty  interior in the line, and ~ - ' ( ~ [ L ] )  and also 

~ I ( r  have non-empty  interior in X. Hence  there exists an n-  

d imensional  Can to r  manifold Z C ~ I ( ~ k [ L ] ) \ L .  By L e m m a  5.3, {~,},~a is a 

u.s.f, on Z - - c o n t r a d i c t i n g  the minimality of {~,},~=,. 

We turn now to the case n = 2. 

5.5. LEMMA. Let X be a two-dimensional compact metric space and let 

F = {q~, ~2} C C(X) .  Then F is not a u.s.f. 

PROOF. If F is a u.s.f., then ~,2:X---~R 2 is a homeomorph i sm.  Hence  

dim ~12[X] = 2 in R 2, and it follows that ~ 2 [ X ]  contains a square whose vertices 

are (al,/3~)(a2,/32)(a2,/3~) and (a~,/32). Let x,,x2, z,,z2 be points of X so that 

~12(x~) = (a~,/30, ~2(x2) = (a2,/32), ~ , d z , )  = (a2,/3,) and r = (a,,/32). Then 

~,[{xl, x2}] = ~,[{z~,z2}] for i = 1,2, and F is not a u.s.f. [ ]  

5.6. COROLLARY. Let X be a two-dimensional Cantor manifold and let 

F = {~,}3=, be a u.s.f., then for each i,j E [3] dim ~,j = 0. 

PROOF. F rom L e m m a  5.5 it follows that F is a minimal u.s.f. Hence  by 

L e m m a  5.4, dim ~,  = 0. [ ]  

5.7. COROLLARY. With the notation of Corollary 5.6 each ~j is interior. 

PROOF. Since dim ~j = 0, we get by (4.18) that 

dim r [ U] > dim U - dim ~,~j = dim U 

holds for all U C X. In particular, if U C X is open,  then dim U = 2 hence  

dim q~j U => dim U = 2 in the plane, and it follows that q,[U] has non-empty  
�9 �9 "t  

mtertor.  [ ]  

5.8. LEMMA. Let X be a two-dimensional compact metric space, and let 

F = {~,}3=~ C C(X) .  Then F is not a u.s.f. 

PROOF. Assume  F is a u.s.f, on X. Since X contains a two-dimensional  

Can to r  manifold we may assume that X itself is such. By Corlllary 5.7 the 

mappings  ~z ,  ~3,  ~D23 are all interior. Consider  the family F ' =  {~},'=, where 

~4 = ~1. It follows that the triples (1,2, 3) and (4, 2, 3) are interior w.r.t. F '  (see 

Definit ion 3.4) (we write i instead of {i}) and the sequence of triples 

t (4.18) is applicable for U, since U contains a compact subset V with dim U = dim V. The same 
remark applies to the proof of Lemma 5.9. 
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(1,2,3), (4,2,3), (1,2,3), (4 ,2 ,3 ) , - . .  

is an interior chain w.r.t. F '  of arbitrary length. By the main lemma F '  is not a 

u.s.f., and hence neither F is such. []  

5.9. LEMMA. Let X be a two-dimensional Cantor manifold and let F = 

{~,}~=ICC(X) be a u.s.f. There exist a permutation rr of [4] and a two- 

dimensional Cantor manifold X '  C X such that the restrictions to X '  of the four 

functions 

�9 r(4),rr(3), ~ ~r(4),~(2), ~ ~'(1),~r(3), ~ ~r(1),~'(2) 

are interior on X' .  

PROOF. By Lemma 5.8 F is minimal. Hence by Lemma 5.4, for all a C[4], 

l a J = 3  and d i m ~ o = 0 .  By Theorem 4.19 we get that for all U C X  with 

d c U - - 2 ,  d c ~ a [ U ] _ - > d c U - d i m ~ o = 2 .  

Let us see first that two functions of the form ~,j with a common index i, e.g. 

~1.2 and ~.3, cannot both reduce the dimension of a two-dimensional subset of X. 

Indeed, assume dim ~12[ U] = dim ~13[ U] -- 1 for some U C X with dim U = 2. 

Since each such U contains a two-dimensional Cantor manifold, we may assume 

that U is such (clearly d i m ~ j [ U ] - - 0  is impossible). As we remarked 

dc ~123[ U] _-> 2. The two-dimensional projections of ~123[U] in R 3 are ~n[U] ,  

~3[U]  and ~23[U], and by our assumption two of them, ~12[U] and ~13[U], are 

one dimensional. It is also clear that dim ~1[ U] -- 1 (otherwise ~1 is constant on 

U and {~L=2.3.4 is a u.s.f, on U contradicting Lemma 5.8). Hence we get a 

contradiction to Theorem 4.9. 

We come now to the proof of the lemma: if all the functions r are interior on 

X then there is nothing to prove. Otherwise, one of them, say ~2.3, is not interior, 

i.e. there exists a U C X open such that int ~23[ U] = O in the plane. Let X '  C U 

be a two-dimensional Cantor manifold. Then, in particular dim ~23[X'] _-< 1. 

From the above discussion it follows that for each function q~,j with a common 

index with ~23, and each U C X'  open dim ~0,~[ U] = 2 holds, i.e. the interior of 

~,j[ U] in R 2 is not empty. Hence the functions ~,2, r ~,2, r are all interior. [] 

PROOF OF THEOREM 2.24 FOR n = 2. Let X be a two-dimensional compact 

metric space, and let F = {q~,}~=l C C(X) .  If F is a u.s.f., then by Lemma 5.9 we 

may assume that X is a two-dimensional Cantor manifold, and that ~,2, q~13, q~24, 

q~3, are all interior on X. Hence, the triples (1,2, 3) and (4, 2, 3) are interior w.r.t. 

F and the sequence of triples 
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(1,2,3) ,  (4,2,3) ,  (1,2,3),  ( 4 , 2 , 3 ) , . .  �9 

is an interior  chain w.r.t. F of arbi t rary length. By the main lemma F is not a 

u.s.f. [ ]  

Before  proving T h e o r e m  2.24 for n = 3, we still need  more  informat ion on the 

case n = 2. 

5.10. LEMMA. Let X be a two-dimensional  Cantor manifold, and let F = 

{~ }~=, C C ( X )  be a minimal  u.s.f. Then for each 1 <-- i <= k there exist 1 <= j, < j2 <- 

k, j, ~ i g  j2 so that dim ~ , , [X] = dim ~v,2[X ] = 2. 

PROOF. We may assume that i = 1. By L e m m a  5.4 dim Ctk_,l = 0. Hence  by 

T h e o r e m  4.19 dc ~tk-,~[X] --> 2. Clearly ~, is not constant  on X (otherwise {~,}k=, 

would not  be minimal) and there fore  dim ~,1[X] = 1. Hence  by T h e o r e m  4.9 

there  exists some j, E [k - 1], jl ~ i so that d i m ~ % [ X ]  = 2. 

Set a = ([k - 1] \{j}) U {k } then I a I = k - 1, and again by L e m m a  5.4 dim ~a = 

0, and by T h e o r e m  4.19 dc ~a[X]  => 2. Applying the same argument  there  exists 

some j2 E a, j~ ~ i so that dim ~,.,2 = 2. Clearly jl ~ j2 and we are done.  [ ]  

5.1I. LEMMA. Let  X be a compact  metric two-dimensional  space, and let 

{q~,}~=l C C ( X )  be a u.s~f, on X.-~Fhen there exist b, c C[K]  with b t-I c = ~ and 

I bl = I c l  = 2 so that dim~vb[x] = d im~c[x ]  = 2. 

PROOF. By L e m m a  5.2 we may assume that X is a two-dimensional  Can tor  

manifold,  and that {~i}~=1 is a minimal u.s.f, for X. Let  us call a pair  ( i , j ) C [ k ]  a 

good pair if dim ~00.j~[x ] -- 2. Clearly (by T h e o r e m  4.8, for  example)  there  exists a 

good pair. Assume that it is (1, 2). By T h e o r e m  2.24 for n = 2, k ~_ 5. By L e m m a  

5.10 there  exist 1 _-<j~ < j2_ -  < k so that (3,/',) and (3,j2) are good pairs. If/ ' ,  J 1 or 

j2 ~ 2, then (1, 2) and (3, jl) or (3, j2) can be taken as b and c. If j, = 1 and jz = 2 

then (1,2), (1,3) and (2, 3) are good pairs. By applying L e m m a  5.10 again, there  

exist 1 < jl < j2 --< k so that (4, j~) and (4, j2) are good pairs. If j~ ~ 1 or j2 ~ 2 we 

can take b = (1, 2) and c = (4,1'1) or c = (4, j2). If j~ = 1 and j2 = 2 then (1,4) and 

(2, 4) are good pairs, and we may take b = (1, 3) and c = (2, 4). [ ]  

We come now to the case n = 3. 

5.12. LEMMA. Let X be a compact  three-dimensional metric space and let 

{p,}6=, C C ( X )  be a u.s.f, for X.  Then for each 1 <= i <- 6 there exist b, c C[6] with 

Ib I = l c [ = 2  a n d b N c = O s o t h a t  

dim ~ , } ~ [ x ]  = dim ~ b [ x ]  = 3. 

PROOF. We may assume that X is a three-dimensional  Can tor  manifold.  
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Obse rve  first that  no family F -- {t0~}~=~ C C ( X )  can be a u.s.f, for  X. Indeed ,  by 

T h e o r e m  4.17 there  must  be a t ~ ~05[X] with dim t0.~'(t)_-> 2, and if {~0,}~=~ is  a 

u.s.f, for t, then {0,},~=1 is a u.s.f, for 0 ; ' ( t )  contradict ing T h e o r e m  2.24 for  n = 2. 

It follows that  none  of the 9~'s, 1 = i _-< 6 is constant  on X. Let  us p rove  the 

l e m m a  for  i = 6. By the above  r emark  q~6[X] is an interval  [a , /3] .  Each  a < t < / 3  

disconnects  96[X], hence  9;~(t) disconnects  X. Since X is a th ree -d imens iona l  

Can to r  manifo ld  it follows that  dim 9g~(t) >_- 2. Clearly {q~}~=~ is a u.s.f, for  ~,g'(t).  

By L e m m a  5.11 there  exist b, c C[5] with lbl  = lcl  = 2 and b 71 c = ~  so that  

dimr For  each pair  b ,c  C[5] with ] b l = l c [ = 2  

and b ( l c = Q s e t  

(5.13) T(b,c)={t~6[x]:dim~b(~;,'(t))=dim~r 

It follows that  

[,.J T ( b , c ) D { t : a < t < / 3 } .  
b,c 

H e n c e  there  exists a pair  b, c so that  T(b, c) is of second ca tegory  in [a, /3] .  T h e  

l e m m a  now follows f rom L e m m a  (4.3) taking X = 916~b[X] (resp X = ~t~r~[X])  

and Y = T(b, c). [] 

5.14. LEMMA. Let X and {9~} 6 ~ be as in Lemma 5.12. Then there exists a 

Y C X  so that for each l <-i <=6 there exist b, c C[6]\{i} with I b l = l c ] =  2 and 

b 71 c = Q such that ~p~,~b and 9 ~  are interior on Y. 

PROOF. We  may assume that X is a th ree-d imens iona l  Can to r  manifold.  

Recall  that  for Z C R  ~ i n t Z / Q  and d i m Z  = n are equivalent  condit ions.  

Choose  an index i, e.g. i =  1. If for  all b C { 2 , 3 , . - - , 6 }  with ] b l = 2 ,  and all 

open  U C X dim 9 I~r-,[ U] = 3 then we do nothing.  If for some  b, C {2, 3, .  �9 6}, 

] b, I = 2 and U C X open dim 9 i1~o< [ U] < 3, we set U = Y~. If there  exist open 

U C Y~ and ano the r  bz C {2, 3, .  �9 6}, ] b2 ] = 2 with dim 9 i~b~[ U]  < 3, we take  

U = Y> 

In this way we cont inue  as far as we can. Suppose  we end with bk and Y~. It 

follows that  for  all 1 < /  <- k, d im 9m~,[Y~] < 3. Let  X, be  a closed ball in Y~. 

Then  d i m X ,  = 3. Clearly {~,}{~=~ is a u.s.f, for X,.  By L e m m a  5.12 there  exist 

b ,c  C{2 ,3 , . . . . ,6}  with I b I = I c I = 2 and b f3 c = ~ so that  

d im q~ lu~ [X, ]  = dim 9 mu~ [X~] = 3. 

H e n c e  b, c f f  {b,. -. b~}. If U is open  in X, then its inter ior  in Y, is not empty .  It 

follows that  d im g ~ b [ U ]  = dim g ~ [ U ]  = 3, because  else we could take  U = 

Y~+, and b = b~+, (or c = b~+0, and cont inue  the above  procedure .  
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Now we take  ano the r  index, e.g. i = 2, and ope ra t e  on X~ in the same  m a n n e r  

with i = 2 to get X2. Passing on all the six indices i = 1 , - . . ,  6 we get )(6, and 

clearly X6 can be taken  to be  Y. [ ]  

5.15. PROOF OF THEOREM 2.24 FOR n = 3. Let  X be a th ree -d imens iona l  

compac t  metr ic  space,  and let F = {9~}6=~ be funct ions in C(X) .  If F is a u.s.f, on 

X, then by L e m m a  5.14 there  exists a closed Y C X  so that  for  each 1 =< i =<--6 

there  exist b ,c  c [ 6 ] \ { i } , l b l  = I cl  = 2, b A c = ~ ,  and such that  9 , uband  9~ ,ca re  

in ter ior  on Y. It follows that  there  exist inter ior  chains w.r.t F of  arbi t rary  length 

(relat ive to Y). 

Indeed ,  choose  any index 1 =< i _-< 6, e.g. i = 1. Set a~ = {1}. Then  there  exist 

b,,c~ as above.  (a,,b,,c~) will be  the first triple. Next  set a2 = [6 ] \ a ,  U b, tO cz 

then I a2l = 1, i.e. a2 = {/'} for  some  1 =</' =< 6. Choose  b2, c2 C [6]\ a2 with I b21 = 

I c21 = 2, b2 N c2 = ~ and so that  9~2ub2 and 9 ~2~,2 are inter ior  (on Y). (a2, b2, c2) 

will be  the second triple in the chain. Sett ing a3 = [6] \ a2 tO b2 tO c2 we continue.  

By an obvious  induct ion the chain can be cont inued  as long as we please.  H e n c e  

by the main  l e m m a  of Sect ion 3, F is not a u.s.f, on Y, which is a contradict ion.  [ ]  

Let  us turn to n = 4. First we p rove  a l e m m a  of L e m m a  5.12's type.  

5.16. LEMMA. Let X be a four-dimensional compact  metric space, and let 

{9 ,}~=ICC(X)  be a u.s.[. Then for each a C [ 8 ]  with l a l = 2 ,  there exists 

b,c C [ 8 ] \ a ,  Ibl = Icl = 2, b fq c = f~ so that 

dim 9 dub[X] = dim 9 auc[X] = 4. 

Let  us first show how the case n = 4 of T h e o r e m  2.24 follows f rom this l emma.  

The  l e m m a  will be  p roved  later. 

5.17. PROOF OF THEOREM 2.24 FOR n = 4. Let  d i m X  = 4, and {9,}~=t be  a 

u.s.f, on X. First, using L e m m a  5.16 we can show, in the same  way as in the p roof  

of L e m m a  5.14 (replacing i E [6] by a C[8]), that  there  exist Y C X  such that  for 

each a C [ 8 ] ,  l a l = 2 ,  there  exist b, c C [ 8 ] \ a ,  l b l = l c l = 2 ,  b f 3 c = ~ ,  so that  

9 a~,b and 9 ouc are inter ior  on Y. It follows, as in the case n = 3 (with l aj I = 2, 

ins tead of l a j l =  1), that  there  exist inter ior  chains of arbi t rary  length w.r.t. F 

and the  t h e o r e m  follows f rom the main l e m m a  of Section 3. [ ]  

5.18. PROOF OF LEMMA 5.16. Let  a C[8] with l a l = 2 .  We  claim first that  

d im 9o = 2. Indeed ,  by T h e o r e m  4.17 

dim 9a --> dim X - d im 9o [X] _-> 4 - 2 = 2. 
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On the o ther  hand  dim ~, > 2 would imply the existance of an a E q~. [X]  so that  

dim q~ 2 ' ( a )  > 3, but  the six functions {,p~ }+~tsl\~ form a u.s.f, for ~0 : ' (or)  contradict-  

ing T h e o r e m  2.24 for n = 3. Hence  dim q~, = 2. 

Set 

(5.19) D ,  = {a e q~, [ X ] :  dim ~ : ' ( a )  -> 2}. 

By T h e o r e m  4.23 we get 

(5.20) dim D ,  >= dim X - dim ~p, = 2. 

Hence  D,  contains  an open  plane set. 

For  each b, c C I 8 ] \ a ,  l b l = l c l = 2 ,  b f - l c = O ,  set 

(5.21) T(b ,c )={a  E D ,  : d im~0b[~ : ' ( a ) ]  = d i m ~ , [ ~ 0 : ' ( a ) ]  = 2}. 

By L e m m a  5.11 we get that  

D~ C U T(b,c). 
b, c 

Hence  there exist some b, c so that T(b, c) is of second ca tegory  in R 2. By 

L e m m a  4.2 (with X = ~aub[X]  (resp. X = ~ u c [ X ] ) ,  Y = D,  and k = 2, n = 4) 

we get 

dim ~ ~,b[X] = dim ~ .uc[X]  = 4. [ ]  

REMARK. The  natural  approach  to prove T h e o r e m  2.24 for n > 4 is to use 

induct ion to show that if {q~,}2,__, is a u.s.f, on an n-d imens iona l  compac t  metric 

space X, then there exists a 1 N  k -<  n so that for each a C [ 2 n ]  with [a[  = k 

there exist b, c C [ 2 n ] \ a  with I bl = I cl = n - k and b rl c = ~ such that 

dim ~,,ub[X] = dim q~ ~ = n. 

F r o m  such a situation one can cont inue  as we did in the cases n = 3, 4. (Observe  

that we did the same, with k = 1 for n = 3 and k = 2 for n = 4.) 

6. Proof of the main lemma 

We shall p rove  the main l emma in its more  precise setting 3.6; t h roughou t  this 

section we assume that X is a compac t  metric space, and that  F = {~p~}~z21 C C(X). 

6.1. LEMmA. If there exists an interior chain {(aj, bj, ci)}~=t w.r.t. F, then there 

exist k 2 distinct points {x{}l_~,.j=k in X such that for all 1 <= l <= 2n, II II < 8k, 

where/z = E~,4_~ ( -  1)'+JS~i E l~(X). (T is the operator defined in (2.3).) 
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As observed in Remark  3.6, Lemma 6.1 implies the main lemma. 

Before proving Lemma 6.1, let us examine an example which may clarify the 

nature of the points {x',} to be constructed in the proof of Lemma 6.1. 

Let {(aj, bj, cj)}~=~ be an interior chain w . r . t .F .  (The only properties of an 

interior chain which are relevant here are that a / U  bj U c, U aj+, = [2n], and that 

these sets are mutually disjoint). 

Let {x{}, 1 < i,j <= k be k 2 distinct points in X so that 

(i) ~b,(x{) =~0%(xJ,.,) for all l<=j<=k and i odd. 

(ii) r162  for all l<=j<=k and i even. 

(iii) ~ , , ( x [ " ) =  ~a,(X~) for all 1 < j - <  k and I -< i =< k. 

d 
Figure 2 illustrates the situation, x - - y  or d i m e a n s  ~,,~(x)= ,p.,(y). 

I O z 2 a 3 3 
X I - -  X I X I 

b.] ~:I b 
O~ 2 Q' X 

. ~ 2 - - x e  - } 

b,/ b/l b~ 

~ ' 4 - -  x 4  - x'~ 

a_ ! a~ )5 
X - "k  

Fig. 2 

y 

. . . . . . . . . . .  X! . . . . . . . . . . . .  ......• 
I 

• 

x!-I oj J! ai, 1 .xj,*1 
I 

Cj I - -  

x J 

We claim that i f /z  E l , (g)  is defined by /z = E , . j ( -  1)'+J~,~ then I[ T~/x II < 4K 

for all 1 =< l =< 2n. Indeed,  fix an l, 1 < l =< 2n. Let x{ be an " in ter ior"  point of the 

"mat r ix"  A = {x{, 1 =< i, j =< k}, i.e. 1 < i, j < k. Then l is an element  in one and 

only one of the sets a,, b,, cj, a,.~. It follows that the correspondence x{ ~ o't(x~) 

defined by 

x{-' i f l E a j  

x~-~ u' if 1 E bj 
(*) o-t(x ) = 

x{ if I E  c, , (- I) '  

x i "  if I E aj~, 
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is well defined on the "interior" A '  of A. It is also ctear that if both x~ and o'i(x{) 

are in A' ,  then 2 , j trt(x,)--x~. Hence ot can be extended to an idempotent 

permutation of D, = A '  U o'~ [A ']. If o'~ (x~) = x i',', for some x i E D,, then by (*) we 

have that ( -  1)'~'~5,,(x{)+ ( -  l)'"+i"6~,(x'~) = 0. Hence Dz can be decomposed 

into disjoint pairs, namely {xi, o't(x~)}, x~ ~ D~, so that the contribution of each 

pair to the norm of Ttg is cancelled. It follows that the only points of A which 

may contribute to II II are the points of A \ D~, whose number is smaller than 

4K. Hence I[ T~/z II < 4K. 
The points {x~} to be constructed in the proof of Lemma 6.1 will enjoy most of 

the properties of the points {x~} considered above i.e., that "most"  of the points 

{x~} do not contribute to the norm of T~# for all l E [2n]. 

Before the construction we still need a definition and two lemmas whose proof 

will be brought after that of Lemma 6.1. 

6.2. DEFINITION. Let a, b,c C[2n]. 

(i) A sequence {x,},~ C X  will be 

b, c ((b, c a.s.) in short) if 

called an alternating sequence w,r.t. 

and 

~r = q:b(x,+t) for i odd, 

~c(x,) = q~c(x,.~) for i even 

holds. 

(ii) A pair of sequences {x,},"=, {x,}~_',,+~ will be called a doubly alternating 

; " {x,}!=,,.~ are sequencew.r.t ,  a;  b,c ((a b,c d.a.s.) in short) if both {x,},=~ and :" 

(b,c a.s.) and, in addition, Co(x,) = r holds for l<=i<=m. Figure 3 

I 

b 

(3 
2 

C 
Q ;( 

b o 
4 

r 

O 

b 
0 

Fig. 3 

:t2 

b 

'[ I0 

b 'x8 

Y'7 
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d 
illustrates the concepts of (b, c a.s.) and (a;  b, c d.a.s.), x l - - x 2  or dXl means 

= ( x 2 ) .  

(iii) Let G',  G be subsets of X, and let k be an integer. We use the notation 

G'  < G (tel a ; b, c ; k) to state that G '  C G, and if {a,}~., are points in ~a[G'] so 

that a , ~  aj for i even and/ '  odd, then there exists a (b, c a.s.) {x,}~=l in G with 

q~ (x,) = a,, 1 ~ i _-< k. 

6.3. LEMMA. Let (a, b, c) be an interior triple w.r.t. F. 

(i) For each integer k > 0, each open G C X contains some open G' so that 

G ' < G  ( re la ;  b,c; k). 

(ii) Each open G C X  contains an (a;  b, c d.a.s.) of arbitrary length. 

6.4. LEMMA. Let {(aj, bj, cj)}~=l be an interior chain w.r.t. F. Then there exist 

open sets {Gj}~=I and {G~}~=I in X so that the following holds: 
(i) G~<Gj  (relai; bj, cj; k), l<=/,<-k. 

(ii) qga[Gj_l] Cr 1 </,  =< k. 

(iii) The sets {Gj}~=I are mutually disjoint. 

We shall first prove Lemma 6.1, and then Lemma 6.3 and 6.4. 

PROOF OF THE MAIN LEMMA. Let {(aj, bi, q)}~ol be an interior chain w.r . t .F.  

Let {Gj}~=I and {Gj}~'=I be open sets in X enjoying the properties (i), (ii), (iii) of 

Lemma 6.4. We shall construct the points {x~} so that for each 1 =</, _-< k the 

points {x]}~=, will be contained in G,. 

For j = 1, let {a~}~=l be k distinct points in ~,[G'I] .  Since GI < GI (rel a~; 

b~,ci; k), there exists in Gt a (bl, c~ a.s.) {x~}~=l with ~p%(xZ~)= al ,  l<~i<-_k, 
hence the points {xl~}f=l are distinct. 

For /, = 2, set a~ = ~0%(x~,), 1 ~ i _-< k. By Lemma 6.4(ii) ~p%[G1] Cq~%[G~], 

hence {a~}~=l C~,~[G~]. Now we would like to apply the fact that G~ < G2 (rel 

a2; b2cz; k)  to construct a (b~, c~ a.s.) {x~}~=l in G2 with ~%(x~) = a]; but to do 

2 for il even and iz odd (see Definition this we have to ensure that a ~  a ,  

6.2(iii)). In order to attain this, we remove from {a]}~=l a maximal number of 

il even and i2 odd. pairs a ~ = a ~, 

In the set of remaining ~' ~' a~ s, a , s  with i even differs from a] 's  with i odd. 

Assume that the number of removed pairs has been mz. Then the number of 

remaining a] 's  will be r~ = k - 2m2. Since we removed pairs of a]'s, one with i 

even and the other with i odd, we may assume without loss of generality that the 

remaining a] 's  are {~]}7~1. Hence, there exists a (b:, c: a.s.) {x~}7% in G~ with 

~%(x~) = a~, 1 ~ i _-< rv By Lemma 6.3(ii) we can choose in G~\{x]}7~=~ an (a2; 

bz, c2 d.a.s.) {x ]}?=~'~+~, {x]}, ~ . . . . . . .  1. This completes the construction of the points 
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{x]}~=, in G2. The points {x~}~=, for j = 3 ,4 , . . 3 . ,  k are constructed similarly. We 

may use induction: assume that the points {x~}~=3-..{xU1}~=t have been 

constructed with {x{}f=~ C G~, 1 =< ] =< j o -  1. Set a ~~ = q~ ~,(x~~ By L e m m a  6.4(ii), 

{a~o}~=t C q~ %[G~o]. Remove  f rom the a{~ all the pairs of points a~o, a ~  with i~ 

even, i2 odd, and a J? = a l  ~ and assume that the remaining a~~ are {oti~176 where 

rio = k -2m,o ,  mJo being the number  of removed pairs. Since G}o< G~o (rel a~o; 

{x, },=~ in G,o with q~,,o(X, ) = a , ,  1 < i < bJo, C~o; k)  we can find a (bJo, c~o a.s.) '~ % io Jo = = r~o" 
�9 " �9 + m .  . 

In !" % {a d.a.s.) ! . . . . .  ~ ~, G,,\{x,  },=, we pick an ~o' bJo'CJo �9 {x, },=%+: {X,o},=,~o+,.,o+, and the 
points {x~'~ ~ are constructed.  By L e m m a  6.4(11"i), {x~"},=, ~ N{x,~'},=, ~ = ~ for 

jl ~ .i2, and for a fixed j, x{ 1 ~ x{ for it even and i2 odd by our construction,  hence 

/z = E , . , ( - 1 ) ' + ' ~  i is a well defined e lement  of norm k ~ in l~(X). 

We claim that [[ T~/x II < 8K for all 1 =< l =< 2n. Indeed,  fix an /, 1 -< l =< 2n. Set 

A = { x { : l < i , ] < = k } ,  and 

A ' = { x ~ :  l < j < k, i ~  {1,rj, rj + l, rj + mj, r~ + mj + l ,k}} .  

As in the example, we shall construct an indempotent  permutat ion o't on a set Dr, 

with A ' C D ,  C A ,  so that if o-t(x0 = xl,], then ( -  1) '+j + ( -  1) 'o§ = 0, and ~o,(x~) = 

,p,(Xlo~ 
It will follow, as in the example,  that Dr can be decomposed into disjoint pairs 

(namely {x{, o-~(xi)}, x~ E Dr) so that the contribution of each pair to the norm of 

T,g is cancelled. Hence,  the only points of A which may contribute to the norm 

of T,g are the points of A \ D , .  But A \ D r C A \ A '  and I A \ A ' I = <  

k + k + 6(k - 2) < 8K. Thus II Tt/z [I < 8K. 

As in the example,  we shall define o-~ on A '  first, and then take Dt = 

o'~[A'] U A '. Recall that for each 1 =< j < k, aj U bj tO c, U at+, = [2n], and that 

these sets are mutually disjoint. 

Let  x~ E A ' .  Consider  the following four cases: 

1) l E bj. Then,  if i is even, by our  construction ~b,(x{) = ~,~(x~_~) and we take 

q~j(x~§ and we take o't(x~) = x~+,. Thus, o-~(x~) = x,_,./ If i is odd, then ~pb(x~) = J 

if l E bj 

/ i f i i s e v e n  Xi-1 

,~,(x~) = 

/ if i is odd. X i + l  

2) I E cj. Then similarly 

f x~+l 

o-,(x~) = | 
I. 

if i is even 

if i is odd. 
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3) l E ai. If 1 < i < rj, then q~o,(x~) = r and we take o-I(x{) = x~-'.  If 

rj + 1 < i < r, + m ,  then by the definit ion of an (as, b~, cj d.a.s.) there  exists some  

i', r j + m j + l < i ' < k  in a congruence  class m o d 2  different f rom that  of i 

(namely  i ' =  k + 1 + r, - i) so that  r = Ca,(x~.) and we take o't(x{) = x{, = 

X~+l+r/-i. 
A similar reasoning leads us to take  tr,(x~) = x{,, = x~,+,+,,_, for rj + mj + 1 < i < 

k (observe  that  r i + 1 < i" < rj + mt in this case). Thus,  if l ~ aj we have  

J" x~-' if 1 < i < r i 
trt (X~) 

J i f / >  + 1 .  X k * l - ~ r j -  i rj 

4) l E al+,. If 1 =< i =< rj+, then Ca,(x{) = r +') and we take  o'l(x{) = x~ ~'. If  

i > r i + 1, then r = a~ +' is an e lement  in one of the pairs which has been  

r emoved  in the construct ion of the points  of  A (namely,  of the points  {x~§ 

H e n c e  there  exists an i ' ,  rj < i ' =  < k, with i -  i ' =  1 ( m o d 2 )  so that  Caj+,(x~) = 

q~o,.,(x~.) and we take o-t(x{)=x{,. (Observe  that  by the construct ion,  the 

co r r e spondence  i---~ i '  just defined is idempoten t ,  i.e. i----~ i '  implies i'---~ i.) 

This concludes the definition of ot on A ' .  It follows f rom the definit ion of o'1 

that  if both  x~ and o't(x!) are in A ' ,  then 2 j J H e n c e  o-t o-j(x~) = x,. can be ex tended  

to an idempo ten t  pe rmuta t ion  of D, = A ' U o - I I A ' ] .  It is also clear  that  if 

o-j(X{) = xi',', for some x{ E D,. then 

( - 1)~+sa~,(,~,) + ( -  1)~"+J",~ ~,cx','~) = 0, 

and the main l emma  is proved.  []  

We still have to prove  L e m m a s  6.3 and 6.4. 

PROOF OF LEMMA 6.3. For  G , H  C X  a n d d  C [ 2 n J w e  use the notat ion HC~G 

to state t h a t H  = G 71 r when S is a ld I cube in Cd[G} CR'~r . (Recal l  that  

an m cube  is an open cube in R " with sides parallel to the axes.) 

Le t  ~ / G  C X  be an open set, let k > 0  be an integer,  and let (a ,b ,c )  be an 

inter ior  triple w . r . t . F .  

Set G~ = G. Since ~ , ~  is interior,  there  exists some  n cube  S in ~ou~[G~] 

(recall that  I a U b I = n). We  may assume that  S = A x B where  A, B are l a I, 

Ibl  cubes  in r  r  resp. 

Let  B'~,B~ be Ib I cubes in B with B'~AB~=(~ .  Set 

t _ _  t ~ t  ~ t  S ~ -  A • B~, S~ = A x B~ 

(see [13, fig. 3, p. 307] where  a similar construct ion has been  carr ied out with 

=-2, and t /=-Ibl=lcl = and 
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- I  t G~ = G~ ~ ,;o~4S~), a~  = O~ ~ v o~4S~). 

Clearly S ~  S~= ~ =  G '  GL  

G'kC~, Gk, G '~C~  G~ 

and G~, G~ are open subsets of X. 

Since r ~ is interior, there exists an n cube S~ , = A '  x C'  in qo~[G~],  where 

ta l ,  lcl cubes in ~o[G;~], ~p~[O~] respectively. Clearly A ' C A  = A',  C '  are 

~o[G~I. 

Set 

Return again to 
- 1 

A " ' c A " .  Set 

~ t  ~ [  ~ ,] contains an 

Gk , G~N -' ' ' = ~ o ~ ( S ~ _ , ) .  

It follows that G = G~ D ,ubG;, D .u~G;,_,. 

We return now to S~: S~= A x B~D A ' x  B~. Set 0 ~ -  G~A q~2~b(A'x B~). 

( ~  is open with q~o[(~] = A' .  

Now ~,u~ [G~] contains an n cube S'~ ,=  A " x  C" where A " C A ' .  Set 

G~_~ Gkf"l -1 ,, " = " ~ ( S ~  3. 

S'~_,. S'~ ,= A ' x  C 'D A " x  C'. Set (~;,_, = 

n cube S ~,_~ = A'" x B "  with 

t t 1 1 8 !  "~ G k - 2 = G k  1N~~162 k-2). 

Then G~, ~ D ,ubG~ 2.  

Continuing in this manner we construct open sets {G',}~=, and {Gt;}~=l so that 

! t t ! 
G = G k D . u b G k D ~ u c G k - l D . u b G '  �9 "D k 2D " , ~ c G 2 D ~ b G , ,  

G = GkD,,ubG'~D,,~cG'~-~D.ubG'~ 2D "..Dou~G'~D.~hG'; 

and 

q~a[G'k] = q~[G~] D q~ [G~,_~] D q~a[G~-,] D q~[G;,-2] D ~o[GL2] D . . .  

D q~,, [G ' ]  D q~,[G';] D q~. [O',] = A,,  

A, is contained in all the la] cubes q~,[G;] and q~o[G"], i.e. the la l  cube 

l<=i<=k. 

We claim that G ~ < G  ( re la ;  b,c; k). Indeed, let {a~}~=, be points in 

r = A, such that a~'s with even i differ from a, 's  with odd i. Let {z~}~-, be 

points in G', with Ca(z~) = a~, 1 =< i =< k. Set x, = z,. Since G~ D ~ubG'~, and both 

x~ and z2 are in G'I, it follows that there is a point x2 in G~ with ~Oa(X2) = q~,(Z2) = 
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! t - 1  ~_~ and ~b(x2) = ~b(x,). Let  us explain this point:  G~ = G2n~oub(S)  where  

S = A • B, A C R  lal, B C R  Ibl. Suppose  the coordinates  of ~ ~ub(xt) and ~aob(Z2) 

(in Rr~ R Ibl) are ~r = (oq, fl,) and r  = (a2, f12). Since the cube 

S = A • B contains the points (a , , /3 , )  and (a:,/32) it contains also the point 

(a2,/3~), and we take as x: a point  in G~ for which ~~ (a.~,/3,). 

Now we cont inue  in a similar way: x2 and z~ are both in G ' ,  and G~ D a~G;,  

thus as above  there  exists a point  x3EG~ with r = r  and 

9~(x3) = ~,(x2), and by an obvious induction we construct  the points {x,}~=~. An 

immedia te  check shows that ~o(x,) = a~, 1 < i -< k and that {x,}~=, is a (b, c a.s.). 

Observe  that x, # x,§ (since the same is t rue for the a,'s) and that {x~},~-~ C G~. 

This proves (i) of L e m m a  6.3. To  prove L e m m a  6.300,  construct  in G~, in the 

same way, a (b, c, a.s.) { x , } ~ . , ,  with a~ = ~,(x2~+l-~), 1 _-< i _-< k. This is possible 

since {a~ }~=, C A, C 9o [ G'(]. It follows that the pair {x~ }~=, and {x, }~ k +, is a (a ; b, c 

d.a.s.). Observe  that since G;, A G;~ = ~ ,  {x,}~=, n {x,}~+,  = ~ too. Since k was 

arbi t rary this proves L e m m a  6.3(ii). []  

PROOF OF LEMMA 6.4. Set X = XE. Since by the definition of an interior  chain 

q~~ is interior,  it follows that ~ o b , [ X ~  ] contains an n cube S = A x B, where  

A ,  B are l ak I, I bk I cubes respectively.  (Recall that by an m cube we mean an 

open  m-dimens iona l  cube in R " whose sides are parallel to the axes of R ", and 

that l aj U bjl = [aj u cjl = n for  1 =<j =< k.) Let  B , ,B2  be I bk I cubes in R'b~l so 

that B, A B2 = ~ ,  B~ C B, B2 C B and set 

-1 A 

Clearly Gk is open  in X, hence by L e m m a  6.3 there  exists an open  G~, so that 

G~, < G~ (rel ak ; bk, Ck ; k). ~',,,~,b, [G ~] contains also some n cube A '  x B '  of the 

same type,  and clearly A ' C A .  

Set Xk_~ = Xk n ~2~ub~(A' • B2), then Xk-, is open  and 

q~. [XE-,] = A 'C~o ,  [G~] 

and since B, (3 B2 = ~ it follows that G~ f3 Xk-, = 

-I A -' A '  ~akUb,( X B , )  f"l tp akubk( X B2) = O too. 

Now opera te  in a similar manner  on Xk-, with the inter ior  triple 

(ak-,, b~_~, Ck-,), to construct  in X~ , open  sets Xk-2, Gk-,, and G;,_, so that 

G;._~ < Gk-, (rel a~_,; bk-,. Ck-,; k). 

and 
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(~ . . . .  [Xk-2] C (~ . . . .  l G ~:-1] * 

Since Gk-1CXE 1, it follows that Gk A G~_~ = 0 .  

By an obvious induction we continue, and construct open sets Gj and Gj for 

l_-<j_-k so that 

(i) G~<G~( re l a i ;  bj, c~; k ) f o r  l=<j_-<k, 

(ii) ~p~, [Gj 1] C r [G;] for 1 < j =< k, 

(iii) the sets {G,}~ are mutually disjoint. 

And the lemma is proved. []  
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